Andrew Lan


2021

pdf bib
Math Word Problem Generation with Mathematical Consistency and Problem Context Constraints
Zichao Wang | Andrew Lan | Richard Baraniuk
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We study the problem of generating arithmetic math word problems (MWPs) given a math equation that specifies the mathematical computation and a context that specifies the problem scenario. Existing approaches are prone to generating MWPs that are either mathematically invalid or have unsatisfactory language quality. They also either ignore the context or require manual specification of a problem template, which compromises the diversity of the generated MWPs. In this paper, we develop a novel MWP generation approach that leverages i) pre-trained language models and a context keyword selection model to improve the language quality of generated MWPs and ii) an equation consistency constraint for math equations to improve the mathematical validity of the generated MWPs. Extensive quantitative and qualitative experiments on three real-world MWP datasets demonstrate the superior performance of our approach compared to various baselines.

2020

pdf bib
Robust and Interpretable Grounding of Spatial References with Relation Networks
Tsung-Yen Yang | Andrew Lan | Karthik Narasimhan
Findings of the Association for Computational Linguistics: EMNLP 2020

Learning representations of spatial references in natural language is a key challenge in tasks like autonomous navigation and robotic manipulation. Recent work has investigated various neural architectures for learning multi-modal representations for spatial concepts. However, the lack of explicit reasoning over entities makes such approaches vulnerable to noise in input text or state observations. In this paper, we develop effective models for understanding spatial references in text that are robust and interpretable, without sacrificing performance. We design a text-conditioned relation network whose parameters are dynamically computed with a cross-modal attention module to capture fine-grained spatial relations between entities. This design choice provides interpretability of learned intermediate outputs. Experiments across three tasks demonstrate that our model achieves superior performance, with a 17% improvement in predicting goal locations and a 15% improvement in robustness compared to state-of-the-art systems.