An effective method to improve extremely low-resource neural machine translation is multilingual training, which can be improved by leveraging monolingual data to create synthetic bilingual corpora using the back-translation method. This work focuses on closely related languages from the Uralic language family: from Estonian and Finnish geographical regions. We find that multilingual learning and synthetic corpora increase the translation quality in every language pair for which we have data. We show that transfer learning and fine-tuning are very effective for doing low-resource machine translation and achieve the best results. We collected new parallel data for Võro, North and South Saami and present first results of neural machine translation for these languages.
We describe parBLEU, parCHRF++, and parESIM, which augment baseline metrics with automatically generated paraphrases produced by PRISM (Thompson and Post, 2020a), a multilingual neural machine translation system. We build on recent work studying how to improve BLEU by using diverse automatically paraphrased references (Bawden et al., 2020), extending experiments to the multilingual setting for the WMT2020 metrics shared task and for three base metrics. We compare their capacity to exploit up to 100 additional synthetic references. We find that gains are possible when using additional, automatically paraphrased references, although they are not systematic. However, segment-level correlations, particularly into English, are improved for all three metrics and even with higher numbers of paraphrased references.
We investigate a long-perceived shortcoming in the typical use of BLEU: its reliance on a single reference. Using modern neural paraphrasing techniques, we study whether automatically generating additional *diverse* references can provide better coverage of the space of valid translations and thereby improve its correlation with human judgments. Our experiments on the into-English language directions of the WMT19 metrics task (at both the system and sentence level) show that using paraphrased references does generally improve BLEU, and when it does, the more diverse the better. However, we also show that better results could be achieved if those paraphrases were to specifically target the parts of the space most relevant to the MT outputs being evaluated. Moreover, the gains remain slight even when human paraphrases are used, suggesting inherent limitations to BLEU’s capacity to correctly exploit multiple references. Surprisingly, we also find that adequacy appears to be less important, as shown by the high results of a strong sampling approach, which even beats human paraphrases when used with sentence-level BLEU.
This paper describes the University of Tartu’s submission to the news translation shared task of WMT19, where the core idea was to train a single multilingual system to cover several language pairs of the shared task and submit its results. We only used the constrained data from the shared task. We describe our approach and its results and discuss the technical issues we faced.
We propose the use of pre-trained embeddings as features of a regression model for sentence-level quality estimation of machine translation. In our work we combine freely available BERT and LASER multilingual embeddings to train a neural-based regression model. In the second proposed method we use as an input features not only pre-trained embeddings, but also log probability of any machine translation (MT) system. Both methods are applied to several language pairs and are evaluated both as a classical quality estimation system (predicting the HTER score) as well as an MT metric (predicting human judgements of translation quality).
This paper describes the University of Tartu’s submission to the unsupervised machine translation track of WMT18 news translation shared task. We build several baseline translation systems for both directions of the English-Estonian language pair using monolingual data only; the systems belong to the phrase-based unsupervised machine translation paradigm where we experimented with phrase lengths of up to 3. As a main contribution, we performed a set of standalone experiments with compositional phrase embeddings as a substitute for phrases as individual vocabulary entries. Results show that reasonable n-gram vectors can be obtained by simply summing up individual word vectors which retains or improves the performance of phrase-based unsupervised machine tranlation systems while avoiding limitations of atomic phrase vectors.
This paper describes the submissions of the team from the University of Tartu for the sentence-level Quality Estimation shared task of WMT18. The proposed models use features based on attention weights of a neural machine translation system and cross-lingual phrase embeddings as input features of a regression model. Two of the proposed models require only a neural machine translation system with an attention mechanism with no additional resources. Results show that combining neural networks and baseline features leads to significant improvements over the baseline features alone.