Amir Saffari


2021

pdf bib
End-to-End Entity Resolution and Question Answering Using Differentiable Knowledge Graphs
Amir Saffari | Armin Oliya | Priyanka Sen | Tom Ayoola
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recently, end-to-end (E2E) trained models for question answering over knowledge graphs (KGQA) have delivered promising results using only a weakly supervised dataset. However, these models are trained and evaluated in a setting where hand-annotated question entities are supplied to the model, leaving the important and non-trivial task of entity resolution (ER) outside the scope of E2E learning. In this work, we extend the boundaries of E2E learning for KGQA to include the training of an ER component. Our model only needs the question text and the answer entities to train, and delivers a stand-alone QA model that does not require an additional ER component to be supplied during runtime. Our approach is fully differentiable, thanks to its reliance on a recent method for building differentiable KGs (Cohen et al., 2020). We evaluate our E2E trained model on two public datasets and show that it comes close to baseline models that use hand-annotated entities.

pdf bib
Expanding End-to-End Question Answering on Differentiable Knowledge Graphs with Intersection
Priyanka Sen | Armin Oliya | Amir Saffari
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

End-to-end question answering using a differentiable knowledge graph is a promising technique that requires only weak supervision, produces interpretable results, and is fully differentiable. Previous implementations of this technique (Cohen et al, 2020) have focused on single-entity questions using a relation following operation. In this paper, we propose a model that explicitly handles multiple-entity questions by implementing a new intersection operation, which identifies the shared elements between two sets of entities. We find that introducing intersection improves performance over a baseline model on two datasets, WebQuestionsSP (69.6% to 73.3% Hits@1) and ComplexWebQuestions (39.8% to 48.7% Hits@1), and in particular, improves performance on questions with multiple entities by over 14% on WebQuestionsSP and by 19% on ComplexWebQuestions.

2020

pdf bib
What do Models Learn from Question Answering Datasets?
Priyanka Sen | Amir Saffari
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While models have reached superhuman performance on popular question answering (QA) datasets such as SQuAD, they have yet to outperform humans on the task of question answering itself. In this paper, we investigate if models are learning reading comprehension from QA datasets by evaluating BERT-based models across five datasets. We evaluate models on their generalizability to out-of-domain examples, responses to missing or incorrect data, and ability to handle question variations. We find that no single dataset is robust to all of our experiments and identify shortcomings in both datasets and evaluation methods. Following our analysis, we make recommendations for building future QA datasets that better evaluate the task of question answering through reading comprehension. We also release code to convert QA datasets to a shared format for easier experimentation at https://github.com/amazon-research/qa-dataset-converter

pdf bib
Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity
Hamza Harkous | Isabel Groves | Amir Saffari
Proceedings of the 28th International Conference on Computational Linguistics

End-to-end neural data-to-text (D2T) generation has recently emerged as an alternative to pipeline-based architectures. However, it has faced challenges generalizing to new domains and generating semantically consistent text. In this work, we present DataTuner, a neural, end-to-end data-to-text generation system that makes minimal assumptions about the data representation and target domain. We take a two-stage generation-reranking approach, combining a fine-tuned language model with a semantic fidelity classifier. Each component is learnt end-toe-nd without needing dataset-specific heuristics, entity delexicalization, or post-processing. We show that DataTuner achieves state of the art results on automated metrics across four major D2T datasets (LDC2017T10, WebNLG, ViGGO, and Cleaned E2E), with fluency assessed by human annotators as nearing or exceeding the human-written reference texts. Our generated text has better semantic fidelity than the state of the art on these datasets. We further demonstrate that our model-based semantic fidelity scorer is a better assessment tool compared to traditional heuristic-based measures of semantic accuracy.