Adarsh Pyarelal


2020

pdf bib
MathAlign: Linking Formula Identifiers to their Contextual Natural Language Descriptions
Maria Alexeeva | Rebecca Sharp | Marco A. Valenzuela-Escárcega | Jennifer Kadowaki | Adarsh Pyarelal | Clayton Morrison
Proceedings of the 12th Language Resources and Evaluation Conference

Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based approach for this task, which extracts LaTeX representations of formula identifiers and links them to their in-text descriptions, given only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well as the tool used to create it.

2019

pdf bib
Eidos, INDRA, & Delphi: From Free Text to Executable Causal Models
Rebecca Sharp | Adarsh Pyarelal | Benjamin Gyori | Keith Alcock | Egoitz Laparra | Marco A. Valenzuela-Escárcega | Ajay Nagesh | Vikas Yadav | John Bachman | Zheng Tang | Heather Lent | Fan Luo | Mithun Paul | Steven Bethard | Kobus Barnard | Clayton Morrison | Mihai Surdeanu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Building causal models of complicated phenomena such as food insecurity is currently a slow and labor-intensive manual process. In this paper, we introduce an approach that builds executable probabilistic models from raw, free text. The proposed approach is implemented through three systems: Eidos, INDRA, and Delphi. Eidos is an open-domain machine reading system designed to extract causal relations from natural language. It is rule-based, allowing for rapid domain transfer, customizability, and interpretability. INDRA aggregates multiple sources of causal information and performs assembly to create a coherent knowledge base and assess its reliability. This assembled knowledge serves as the starting point for modeling. Delphi is a modeling framework that assembles quantified causal fragments and their contexts into executable probabilistic models that respect the semantics of the original text, and can be used to support decision making.