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Continuous word representations

apple    [1 0 0 0 … 0 0 0 0 0 … 0]            [3.2    -1.5]

...

banana [0 0 0 0 … 1 0 0 0 0 … 0]            [2.8    -1.6]

...

door      [0 0 0 0 … 0 0 1 0 0 … 0]            [-1.1  12.6]

…

zebra    [0 0 0 0 … 0 0 0 0 0 … 1]            [0.8     0.5]



  

Sparse & continuous representations

apple    [3.2   -1.5]           [ 0  1.7    0   0  -0.2  0 ]

...

banana [2.8   -1.6]           [ 0  1.1    0   0  -0.4  0 ]

...

door      [-1.1 12.6]           [1.7  0  -2.1  0   0  -0.8]

…

zebra    [0.8    0.5]           [  0   0   1.3  0 -1.2   0 ]



  

● Assuming trained word embeddings wi (i=1,…,|V|)

Creating sparse word representations

∑

Sparse
coefficients

Embedding
vector (∈ℝm)

Dictionary
(∈ℝmxk)

min
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● Assuming trained word embeddings wi (i=1,…,|V|)
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● Assuming trained word embeddings wi (i=1,…,|V|)

– Similar formulation to Faruqui et al. (2015)

Creating sparse word representations
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● Calculate a set of (surface form) features using 
feature functions φj

– φj could check for capitalization, suffixes, 
prefixes, neighboring words, etc.

“Classical” sequence labeling

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:



  

● Calculate a set of (surface form) features using 
feature functions φj

– φj could check for capitalization, suffixes, 
prefixes, neighboring words, etc.

“Classical” sequence labeling

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:   pre2=Fr  pre2=fl  pre2=li   pre2=a   pre2=ba    pre2=.
        suf2=it   suf2=es suf2=ke suf2=a   suf2=na     suf2=.



  

● Calculate a set of (surface form) features using 
feature functions φj

– φj could check for capitalization, suffixes, 
prefixes, neighboring words, etc.

“Classical” sequence labeling

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:   pre2=Fr  pre2=fl  pre2=li   pre2=a   pre2=ba    pre2=.
        suf2=it   suf2=es suf2=ke suf2=a   suf2=na     suf2=.

   …  …   …     …  … ...



  

● Rely on the sparse coefficients from α

–

 

Sequence labeling using sparse 
word representation

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:

ϕ(w i)={sign(αi [ j]) j∣αi [ j]≠0}



  

● Rely on the sparse coefficients from α

–

● E.g. 

Sequence labeling using sparse 
word representation

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:      

F⃗ruit≈1.1⋅⃗d28−0.4⋅⃗d171

ϕ(w i)={sign(αi [ j]) j∣αi [ j]≠0}



  

● Rely on the sparse coefficients from α

–

● E.g. 

Sequence labeling using sparse 
word representation

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:      P28
N171

F⃗ruit≈1.1⋅⃗d28−0.4⋅⃗d171

ϕ(w i)={sign(αi [ j]) j∣αi [ j]≠0}



  

● Rely on the sparse coefficients from α

–

● E.g. 

Sequence labeling using sparse 
word representation

X:     Fruit      flies     like       a      banana      .

Y:      NN       NN      VB       DT       NN       PUNCT

φ:      P28    P77 N11    N88      P28  N21
N171     P88  N62     N40      N210   P67

   …   …     …  …    ...

F⃗ruit≈1.1⋅⃗d28−0.4⋅⃗d171

ϕ(w i)={sign(αi [ j]) j∣αi [ j]≠0}



  

Experimental setup

● Linear chain CRF (CRFsuite implementation)
● Part of Speech tagging

– 12 languages from the CoNLL-X shared task

– Google Universal Tag Set (12 tags)



  

Experimental setup

● Linear chain CRF (CRFsuite implementation)
● Part of Speech tagging

– 12 languages from the CoNLL-X shared task

– Google Universal Tag Set (12 tags)

● Hyperparameter settings
– polyglot/w2v/Glove

– m=64

– k=1024

– Varying λs
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Baselines

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)    
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Baselines

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)
● Brown clustering

– Derive features from prefixes of Brown cluster IDs



  

Baselines

ϕ(w i)={ j :αi [ j]∣∀ j∈1,… ,64 }

● Brown clustering
– Derive features from prefixes of Brown cluster IDs

● Features from dense embeddings
–

● Feature rich baseline (FR)
– Standard feature set borrowed from CRFsuite

● Previous, next word, word combinations, …

– 2 variants:
● Character+word level features (FRw+c)

● Word level features alone (FRw)



  

● Results averaged over 12 languages

● Key inspections
– polyglot > CBOW > SG > Glove

Continuous vs. sparse embeddings

Dense S p a r s e
polyglot 91.17% 94.44%
CBOW 88.30% 93.74%
SG 86.89% 93.63%
Glove 81.53% 91.92%



  

● Results averaged over 12 languages

● Key inspections
– polyglot > CBOW > SG > Glove

– Sparse embeddings >> dense embeddings

Continuous vs. sparse embeddings

Dense S p a r s e Improvement
polyglot 91.17% 94.44% +3.3
CBOW 88.30% 93.74% +5.4
SG 86.89% 93.63% +6.7
Glove 81.53% 91.92% +10.4



  

Results on Hungarian



  

Results on Hungarian



  

  

Experiments on generalization

● Training data artificially decreased
– First 150 and 1500 sentences



  

Comparison with biLSTMs

● POS tagging experiments on UD v1.2 treebanks
● Same settings as before (k=1024, λ=0.1)
● biLSTM results from Plank et al. (2016)

Method Avg. accuracy
biLSTM

w
92.40%

SC-CRF 93.15%
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biLSTM

w
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SC+WI-CRF 93.73%



  

Comparison with biLSTMs

● POS tagging experiments on UD v1.2 treebanks
● Same settings as before (k=1024, λ=0.1)
● biLSTM results from Plank et al. (2016)

Method Avg. accuracy
biLSTM

w
92.40%

SC-CRF 93.15%
SC+WI-CRF 93.73%
biLSTM

w+c
95.99%



  

Further experiments in the paper

● Quantifying the effects of further hyperparameters
– Different window sizes for training dense embeddings

● Comparison of different sparse coding techniques
– E.g. non-negativity constraint

● NER experiments (on 3 languages)



  

Conclusion

● Simple, yet accurate approach
● Robust across languages and tasks
● Favorable generalization properties
● Competitive results to biLSTMs
● Sparse representations accessible: 

begab.github.io
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