Sparse Coding of Neural Word Embeddings for Multilingual Sequence Labeling

Gábor Berend

31/07/2017 Vancouver, ACL

Continuous word representations apple $[1000...0000...0] \longrightarrow [3.2 -1.5]$ $[0\ 0\ 0\ 0\ \dots\ 0\ 0\ 1\ 0\ 0\ \dots\ 0] \longrightarrow [-1.1\ 12.6]$ door zebra [0000...00000...1] ------ [0.8 0.5]

Sparse & continuous representations apple $[3.2 - 1.5] \longrightarrow [0 1.7 0 0 - 0.2 0]$ door [-1.1 12.6] [1.7 0 -2.1 0 0 -0.8]

• Assuming trained word embeddings w_i (i=1,...,|V|)

$$\min_{D \in C, \alpha} \sum_{i=1}^{|V|} ||w_i - D\alpha_i||_2^2$$

Embedding Dictionary Sparse coefficients

• Assuming trained word embeddings w_i (i=1,...,|V|)

$$\min_{D \in C, \alpha} \sum_{i=1}^{|V|} ||w_i - D\alpha_i||_2^2 + \lambda ||\alpha_i||_1$$

Embedding Dictionary Sparse Sparsity vector ($\in \mathbb{R}^m$) ($\in \mathbb{R}^{m \times k}$) coefficients inducing regularization

• Assuming trained word embeddings w_i (i=1,...,|V|)

$$\min_{D \in C, \alpha} \sum_{i=1}^{|V|} \|w_i - D\alpha_i\|_2^2 + \lambda \|\alpha_i\|_1$$

Convex setEmbeddingDictionarySparseSparsityofmatricesvector ($\in \mathbb{R}^m$)($\in \mathbb{R}^{m \times k}$)coefficientsinducings.t. $\forall \|d_i\| \le 1$ regularization

• Assuming trained word embeddings w_i (i=1,...,|V|)

$$\min_{D \in C, \alpha} \sum_{i=1}^{|V|} \|w_i - D\alpha_i\|_2^2 + \lambda \|\alpha_i\|_1$$

- Similar formulation to Faruqui et al. (2015)

"Classical" sequence labeling

- Calculate a set of (surface form) features using feature functions ϕ_{i}
 - $-\phi_j$ could check for capitalization, suffixes, prefixes, neighboring words, etc.

"Classical" sequence labeling

- Calculate a set of (surface form) features using feature functions ϕ_{i}
 - $-\phi_j$ could check for capitalization, suffixes, prefixes, neighboring words, etc.

"Classical" sequence labeling

- Calculate a set of (surface form) features using feature functions ϕ_{i}
 - $-\phi_j$ could check for capitalization, suffixes, prefixes, neighboring words, etc.

- Rely on the sparse coefficients from $\boldsymbol{\alpha}$

 $-\phi(w_i) = \{sign(\alpha_i[j]) j | \alpha_i[j] \neq 0\}$

- Rely on the sparse coefficients from $\boldsymbol{\alpha}$
 - $-\phi(w_i) = \{sign(\alpha_i[j]) j | \alpha_i[j] \neq 0\}$
 - E.g. $\vec{Fruit} \approx 1.1 \cdot \vec{d_{28}} 0.4 \cdot \vec{d_{171}}$

- Rely on the sparse coefficients from $\boldsymbol{\alpha}$
 - $-\phi(w_i) = \{sign(\alpha_i[j]) j | \alpha_i[j] \neq 0\}$
 - E.g. $\vec{Fruit} \approx 1.1 \cdot \vec{d_{28}} 0.4 \cdot \vec{d_{171}}$

- Rely on the sparse coefficients from $\boldsymbol{\alpha}$
 - $-\phi(w_i) = \{sign(\alpha_i[j]) j | \alpha_i[j] \neq 0\}$
 - E.g. $\overrightarrow{Fruit} \approx 1.1 \cdot \overrightarrow{d_{28}} 0.4 \cdot \overrightarrow{d_{171}}$

Experimental setup

- Linear chain CRF (CRFsuite implementation)
- Part of Speech tagging
 - 12 languages from the CoNLL-X shared task
 - Google Universal Tag Set (12 tags)

Experimental setup

- Linear chain CRF (CRFsuite implementation)
- Part of Speech tagging
 - 12 languages from the CoNLL-X shared task
 - Google Universal Tag Set (12 tags)
- Hyperparameter settings
 - polyglot/w2v/Glove
 - m=64
 - k=1024
 - Varying λs

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)
- Brown clustering
 - Derive features from prefixes of Brown cluster IDs

- Feature rich baseline (FR)
 - Standard feature set borrowed from CRFsuite
 - Previous, next word, word combinations, ...
 - 2 variants:
 - Character+word level features (FR_{w+c})
 - Word level features alone (FR_w)
- Brown clustering
 - Derive features from prefixes of Brown cluster IDs
- Features from **dense** embeddings
 - $-\phi(w_i) = \{j: \alpha_i[j] | \forall j \in 1, \dots, 64\}$

Continuous vs. sparse embeddings

Results averaged over 12 languages

	Dense	Sparse
polyglot	91.17%	94.44%
CBOW	88.30%	93.74%
SG	86.89%	93.63%
Glove	81.53%	91.92%

- Key inspections
 - polyglot > CBOW > SG > Glove

Continuous vs. sparse embeddings

Results averaged over 12 languages

	Dense	Sparse	Improvement
polyglot	91.17%	94.44%	+3.3
CBOW	88.30%	93.74%	+5.4
SG	86.89%	93.63%	+6.7
Glove	81.53%	91.92%	+10.4

- Key inspections
 - polyglot > CBOW > SG > Glove
 - Sparse embeddings >> dense embeddings

Results on Hungarian

Results on Hungarian

Experiments on generalization

- Training data artificially decreased
 - First 150 and 1500 sentences

Comparison with biLSTMs

- POS tagging experiments on UD v1.2 treebanks
- Same settings as before (k=1024, λ =0.1)
- biLSTM results from Plank et al. (2016)

Comparison with biLSTMs

- POS tagging experiments on UD v1.2 treebanks
- Same settings as before (k=1024, λ =0.1)
- biLSTM results from Plank et al. (2016)

Method	Avg. accuracy
biLSTM _w	92.40%
SC-CRF	93.15%
SC+WI-CRF	93.73%

Comparison with biLSTMs

- POS tagging experiments on UD v1.2 treebanks
- Same settings as before (k=1024, λ =0.1)
- biLSTM results from Plank et al. (2016)

Further experiments in the paper

- Quantifying the effects of further hyperparameters
 - Different window sizes for training dense embeddings
- Comparison of different sparse coding techniques
 - E.g. non-negativity constraint
- NER experiments (on 3 languages)

Conclusion

- Simple, yet accurate approach
- Robust across languages and tasks
- Favorable generalization properties
- Competitive results to biLSTMs
- Sparse representations accessible: begab.github.io