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1 Competing models1

1.1 Topology only embeddings2

Mixed Membership Stochastic Blockmodel (MMB) (Airoldi et al., 2008): a graphical model for3

relational data, each node randomly select a different ”topic” when forming an edge.4

DeepWalk (Perozzi et al., 2014): executes truncated random walks on the graph, and by treating5

nodes as tokens and random walks as natural language sequences, the node embedding are obtained6

using the SkipGram model (Mikolov et al., 2013).7

Node2vec (Grover and Leskovec, 2016): a variant of DeepWalk by executing biased random walks8

to explore the neighborhood (e.g., Breadth-first or Depth-first sampling).9

Large-scale Information Network Embedding (LINE) (Tang et al., 2015): scalable network embed-10

ding scheme via maximizing the joint and conditional likelihoods.11

1.2 Joint embedding of topology & text12

Naive combination (Tu et al., 2017): direct combination of the structure embedding and text embed-13

ding that best predicts edges.14

Text-Associated DeepWalk (TADW) (Yang et al., 2015): reformulating embedding as a matrix fac-15

torization problem, and fused text-embedding into the solution.16

Content-Enhanced Network Embedding (CENE) (Sun et al., 2016): treats texts as a special kind of17

nodes.18

Context-Aware Network Embedding (CANE) (Tu et al., 2017): decompose the embedding into19

context-free and context-dependent part, use mutual attention to address the context-dependent em-20

bedding.21

Word-Alignment-based Network Embedding (WANE) (Shen et al., 2018): Using fine-grained align-22

ment to improve context-aware embedding.23

Diffusion Maps for Textual network Embedding (DMTE) (Zhang et al., 2018): using truncated dif-24

fusion maps to improve the context-free part embedding in CANE.25

2 Complete Link prediction results on Cora and Hepth26

The complete results for Cora and Hepth are listed in Tables 1 and 2. Results from models other27

than GANE are collected from (Tu et al., 2017; Shen et al., 2018; Zhang et al., 2018). We have also28
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repeated these experiments on our own, the results are consistent with the ones reported. Note that29

DMTE did not report results on Hepth (Zhang et al., 2018) .

%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 54.7 57.1 59.5 61.9 64.9 67.8 71.1 72.6 75.9

node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2
LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3

DeepWalk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
Naive combination 72.7 82.0 84.9 87.0 88.7 91.9 92.4 93.9 94.0

TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7
DMTE 91.3 93.1 93.7 95.0 96.0 97.1 97.4 98.2 98.8
WANE 91.7 93.3 94.1 95.7 96.2 96.9 97.5 98.2 99.1

GANE-OT 92.0 94.4 95.7 96.6 97.3 97.6 98.6 98.8 99.2
GANE-AP 94.0 96.4 97.2 97.4 98.0 98.2 98.8 99.1 99.3

Table 1: AUC scores for link prediction on the Cora dataset.

%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 54.6 57.9 57.3 61.6 66.2 68.4 73.6 76.0 80.3

DeepWalk 55.2 66.0 70.0 75.7 81.3 83.3 87.6 88.9 88.0
LINE 53.7 60.4 66.5 73.9 78.5 83.8 87.5 87.7 87.6

node2vec 57.1 63.6 69.9 76.2 84.3 87.3 88.4 89.2 89.2
Naive combination 78.7 82.1 84.7 88.7 88.7 91.8 92.1 92.0 92.7

TADW 87.0 89.5 91.8 90.8 91.1 92.6 93.5 91.9 91.7
CENE 86.2 84.6 89.8 91.2 92.3 91.8 93.2 92.9 93.2
CANE 90.0 91.2 92.0 93.0 94.2 94.6 95.4 95.7 96.3

WANE-ww 92.3 94.1 95.7 96.7 97.5 97.5 97.7 98.2 98.7
DMTE - - - - - - - - -

GANE-OT 93.4 96.2 97.0 97.7 97.9 98.0 98.2 98.6 98.8
GANE-AP 93.8 96.4 97.3 97.9 98.1 98.2 98.4 98.7 98.9

Table 2: AUC scores for link prediction on the Hepth dataset.
30

3 Negative sampling approximation31

In this section we provide a quick justification for the negative sampling approximation. To this end,32

we first briefly review noise contrastive estimation (NCE) and how it connects to maximal likelihood33

estimation, then we establish the link to negative sampling. Interested readers are referred to Ruder34

(2016) for a more thorough discussion on this topic.35

Noise contrastive estimation. NCE seeks to learn the parameters of a likelihood model pΘ(u|v)36

by optimizing the following discriminative objective:37

J(Θ) =
∑

ui∼pd

[log pΘ(y = 1|ui, v)−KEũ′∼pn
[log pΘ(y = 0|ũ, v)]], (1)

where y is the label of whether u comes from the data distribution pd or the tractable noise distribu-38

tion pn, and v is the context. Using the Monte Carlo estimator for the second term gives us39

Ĵ(Θ) =
∑

ui∼pd

[log pΘ(y = 1|ui, v)−
K∑

k=1

[log pΘ(y = 0|ũk, v)]], ũk
iid∼ pn. (2)

Since the goal of J(Θ) is to predict the label of a sample from a mixture distribution with 1/(K+1)40

from pd and K/(K + 1) from pn, plugging the model likelihood and noise likelihood into the label41

likelihood gives us42

pΘ(y = 1;u, v) =
pΘ(u|v)

pΘ(u|v) +Kpn(u|v)
, pΘ(y = 0;u, v) =

Kpn(u|v)

pΘ(u|v) +Kpn(u|v)
. (3)
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Recall pΘ(u|v) takes the following softmax form43

pΘ(u|v) =
exp(〈u, v〉)
Zv(Θ)

, Zv(Θ) =
∑
u′

exp(〈u′, v〉). (4)

NCE treats Zv as an learnable parameter and optimized along with Θ. One key observation is that,44

in practice, one can safely clamp Zv to 1, and the NCE learned model (pΘ̂) will self-normalize in45

the sense that Zv(Θ̂) ≈ 1. As such, one can simply plug pΘ(u|v) = exp(〈u, v〉)) into the above46

objective. Another key result is that, asK →∞, the gradient of NCE objective recovers the gradient47

of softmax objective log pΘ(u|v) (Dyer, 2014).48

Negative sampling as NCE. If we set K = #(V) and let pn(u|v) be the uniform distribution on49

V , we have50

pΘ(y = 1|u, v) = σ(〈u, v〉), (5)

where σ(z) is the sigmoid function. Plugging this back to the Ĵ(Θ) covers the negative sampling51

objective Eqn (6) used in the paper. Combined with the discussion above, we know Eqn (6) provides52

a valid approximation to the log-likelihood in terms of the gradient directions, whenK is sufficiently53

large. In this study, we use K = 1 negative sample for computational efficiency. Using more54

samples did not significantly improve our results (data not shown).55

4 Experiment Setup56

We use the same codebase from CANE (Tu et al., 2017)1. The implementation is based on Ten-57

sorFlow, all experiments are exectuted on a single NVIDIA TITAN X GPU. We set embedding58

dimension to d = 100 for all our experiments. To conduct a fair comparison with the baseline59

models, we follow the experiment setup from Shen et al. (2018). For all experiments, we set word60

embedding dimension as 100 trained from scratch. We train the model with Adam optimizer and set61

learning rate 1e − 3. For GANE-AP model, we use best filte size 1 × 21 × 1 for convolution from62

our abalation study.63

5 Ablation study setup64

To test how the n-gram length affect our GANE-AP model performance, we re-run our model with65

different choices of n-gram length, namely, the window size in convolutional layer. Each experiment66

is repeated for 10 times and we report the averaged results to eliminate statistical fluctuations.67

References68

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. 2008. Mixed membership69

stochastic blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014.70

Chris Dyer. 2014. Notes on noise contrastive estimation and negative sampling. arXiv preprint71

arXiv:1410.8251.72

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD.73

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed repre-74

sentations of words and phrases and their compositionality. In NIPS.75

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social76

representations. In KDD.77

Sebastian Ruder. 2016. On word embeddings - part 2: Approximating the softmax. http://78

ruder.io/word-embeddings-softmax/.79

Dinghan Shen, Xinyuan Zhang, Ricardo Henao, and Lawrence Carin. 2018. Improved semantic-80

aware network embedding with fine-grained word alignment. In EMNLP.81

1https://github.com/thunlp/CANE

3



Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu. 2016. A general framework for content-enhanced82

network representation learning. In arXiv preprint arXiv:1610.02906.83

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. LINE: Large-84

scale information network embedding. In WWW.85

Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. 2017. CANE: Context-aware network86

embedding for relation modeling. In ACL.87

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015. Network represen-88

tation learning with rich text information. In IJCAI.89

Xinyuan Zhang, Yitong Li, Dinghan Shen, and Lawrence Carin. 2018. Diffusion maps for textual90

network embedding. In NIPS.91

4


