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SNLI [Bowman et al., 2015]
A large scale dataset for NLI (Natural Language Inference;
Recognizing Textual Entailment [Dagan et al., 2013])

Premises are image captions, hypotheses generated by
crowdsourcing workers:

Premise
Street performer is doing his act for kids

Hypotheses
1. A person performing for children on the street⇒ ENTAILMENTENTAILMENT

2. A juggler entertaining a group of children on the street⇒ NEUTRALNEUTRAL

3. A magician performing for an audience in a nightclub⇒ CONTRADICTIONCONTRADICTION

Event co-reference assumption
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Neural NLI Models

End-to-end, either sentence-encoding or attention-based
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Lexical knowledge: only from pre-trained word embeddings
As opposed to using resources like WordNet

SOTA exceeds human performance... 1

1
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1[Gururangan et al., 2018, Poliak et al., 2018]: by learning “easy clues”
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Do neural NLI models implicitly learn
lexical semantic relations?
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New Test Set
We constructed a new test set to answer this question

Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set

Hypothesis:
Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings

Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



New Test Set
We constructed a new test set to answer this question
Premise: sentences from the SNLI training set
Hypothesis:

Replacing a single term w in the premise with a related term w′

w′ is in the SNLI vocabulary and in pre-trained embeddings
Crowdsourcing labels (mostly contradictions!)

Contradiction
The man is holding a saxophone→ The man is holding an electric guitar

Entailment
A little girl is very sad→ A little girl is very unhappy

Neutral
A couple drinking wine→ A couple drinking champagne

Max Glockner, Vered Shwartz and Yoav Goldberg · Breaking NLI Systems with Sentences that Require Simple Lexical Inferences 5 / 13



Evaluation Setting

3 representative models:
Residual-Stacked-Encoder [Nie and Bansal, 2017]
ESIM (Enhanced Sequential Inference Model) [Chen et al., 2017]
Decomposable Attention [Parikh et al., 2016]

Train on SNLI training set, test on the original & new test set
In the paper: enhancing with additional existing datasets
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Results
Can neural NLI models recognize lexical inferences?

Decomposable Attention ESIM Residual-Stacked-Encoder
0
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84.7
87.9 86

51.9

65.6
62.2

SNLI Test Set

New Test Set

Dramatic drop in performance across models.
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Sanity Check
Performance of WordNet-informed Models
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Best Neural Model

KIM [Chen et al., 2018]

WordNet baseline

The test set is solvable using WordNet.
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What do neural NLI models learn with
respect to lexical semantic relations?
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Analysis 1: Word Similarity
Models err on contradicting word-pairs with similar embeddings

A man starts his day in India→ A man starts his day in Malaysia

Especially for fixed word embeddings
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Analysis 2: Frequency in Training

Tuning embeddings may associate specific (word, replacement)
pairs to a label, e.g. (man, woman)→ contradiction

Accuracy increases with frequency in training set
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Recap

New NLI test set that evaluates systems’ ability to make
inferences that require very simple lexical knowledge

SOTA systems perform poorly on the test set

Systems are limited in their generalization ability

May be used as a complementary test set to assess the lexical
inference abilities of NLI systems

Thank you!
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