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1 Architecture of the encoder-decoder
network

In this section, we describe the details of the
baseline encoder-decoder network which is fur-
ther extended for permutation-free training. The
encoder network consists of a VGG network and
bi-directional long short-term memory (BLSTM)
layers. The VGG network has the following 6-
layer CNN architecture at the bottom of the en-
coder network:

Convolution (# in = 3, # out = 64, filter = 3×3)
Convolution (# in = 64, # out = 64, filter = 3×3)
MaxPooling (patch = 2×2, stride = 2×2)
Convolution (# in = 64, # out = 128, filter = 3×3)
Convolution (# in=128, # out=128, filter=3×3)
MaxPooling (patch = 2×2, stride = 2×2)

The first 3 channels are static, delta, and delta delta
features. Multiple BLSTM layers with projection
layer Lin(·) are stacked after the VGG network.
We defined one BLSTM layer as the concatena-
tion of a forward LSTM
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When the VGG network and the multiple BLSTM
layers are represented as VGG(·) and BLSTM(·),
the encoder network in Eq. (2) maps the input fea-
ture vector O to internal representation H as fol-
lows:

H = Encoder(O) = BLSTM(VGG(O)) (32)
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The decoder network sequentially generates the
n-th label yn by taking the context vector cn and
the label history y1:n−1:

yn ∼ Decoder(cn, yn−1). (33)

The context vector is calculated in an location
based attention mechanism (Chorowski et al.,
2015) which weights and sums the C-dimensional
sequence of representation H = (hl ∈ RC |l =
1, . . . , L) with attention weight an,l:

cn = Attention(an−1, en, H), (34)

,
L∑
l=1

an,lhl. (35)

The location based attention mechanism defines
the weights an,l as follows:

an,l =
exp(αkn,l)∑L
l=1 exp(αkn,l)

, (36)

kn,l = wTtanh(V Een−1 + V Hhl + V Ffn,l + b),
(37)

fn = F ∗ an−1, (38)

where w, V E , V H , V F , b, F are tunable parame-
ters, α is a constant value called inverse tempera-
ture, and ∗ is the convolution operation. We used
10 convolution filters of width 200, and set α to 2.
The introduction of fn makes the attention mech-
anism take into account the previous alignment in-
formation. The hidden state e is updated recur-
sively by an updating LSTM function:

en = Update(en−1, cn−1, yn−1), (39)

, LSTM(

Lin(en−1) + Lin(cn−1) + Emb(yn−1)), (40)

where Emb(·) is an embedding function.



Table 1: Examples of recognition results. Errors are emphasized as capital letter. “ ” is a space character,
and a special token “*” is inserted to pad deletion errors.

(1) Model w/ permutation-free training (CER of HYP1: 12.8%, HYP2: 0.9%)
HYP1: t h e s h u t t l e * * * I S I N t h e f i r s t t H E l i f E o * f s i n c e t h e n i n e t e e n e i g h t

y s i x c h a l l e n g e r e x p l o s i o n

REF1: t h e s h u t t l e W O U L D B E t h e f i r s t t * O l i f T o F f s i n c e t h e n i n e t e e n e i g

h t y s i x c h a l l e n g e r e x p l o s i o n

HYP2: t h e e x p a n d e d r e c a l l w a s d i s c l o s e d a t a m e e t i n g w i t h n . r . c . o f f i c i a

l s a t a n a g e n c y o f f i c e o u t s i d e c h i c a g o

REF2: t h e e x p a n d e d r e c a l l w a s d i s c l o s e d a t a m e e t i n g w i t h n . r . c . o f f i c i a

l s a t a n a g e n c y o f f i c e o u t s i d e c h i c a g o

(2) Model w/ permutation-free training (CER of HYP1: 91.7%, HYP2: 38.9%)
HYP1: I T W A S L a s t r * A I S e * D * I N J U N E N I N E t E e N e * I G h T Y f I V e T O *

T H I R T Y

REF1: * * * * * * * * a s t * r O N O M e R S S A Y T H A T * * * * t H e * e A R T h ’ S f A T e I S S E A

L E D

HYP2: * * * * a N D * * s t * r O N G e R S S A Y T H A T * * * * t H e * e * A R t H f A T e I S t o f o

r t y f i v e d o l l a r s f r o m t h i r t y f i v e d o l l a r s

REF2: I T W a * S L A s t r A I S e * D * I N J U N E N I N E t E e N e I G H t Y f I V e * * * t o f o r t

y f i v e d o l l a r s f r o m t h i r t y f i v e d o l l a r s

Algorithm 1 Generation of multi speaker speech
dataset
nreuse ⇐ maximum number of times same ut-
terance can be used.
U ⇐ utterance set of the corpora.
Ck ⇐ nreuse for each utterance Uk ∈ U
for Uk ∈ U do
P (Uk) = Ck /

∑
l Cl

end for
for Ui in U do

Sample utterance Uj from P (U) while ensur-
ing speakers of Ui and Uj are different.
Mix utterances Ui and Uj

if Cj > 0 then
Cj = Cj − 1
for Uk ⇐ U do
P (Uk) = Ck /

∑
l Cl

end for
end if

end for

2 Generation of mixed speech

Each utterance of the corpus is mixed with a
randomly selected utterance with the probability,
P (Uk), that moderates over-selection of specific
utterances. P (Uk) is calculated in the first for-loop
as a uniform probability. All utterances are used as
one side of the mixture, and another side is sam-

pled from the distribution P (Uk) in the second for-
loop. The selected pairs of utterances are mixed at
various signal-to-noise ratios (SNR) between 0 dB
and 5 dB. We randomized the starting point of the
overlap by padding the shorter utterance with si-
lence whose duration is sampled from the uniform
distribution within the length difference between
the two utterances. Therefore, the duration of the
mixed utterance is equal to that of the longer utter-
ance among the unmixed speech. After the gen-
eration of the mixed speech, the count of selected
utterances Cj is decremented to prevent of over-
selection. All counts C are set to nreuse, and we
used nreuse = 3.

3 Examples of recognition results and
error analysis

Table 1 shows examples of recognition result. The
first example (1) is one which accounts for a large
portion of the evaluation set. The SNR of the
HYP1 is -1.55 db and that of HYP2 is 1.55 dB.
The network generates multiple hypotheses with
a few substitution and deletion errors, but without
any overlapped and swapped words. The second
example (2) is one which leads to performance re-
duction. We can see that the network makes errors
when there is a large difference in length between
the two sequences. The word “thirty” of HYP2 is
injected in HYP1, and there are deletion errors in



HYP2. We added a negative KL divergence loss to
ease such kind of errors. However, there is further
room to reduce error by making unshared modules
more cooperative.
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