

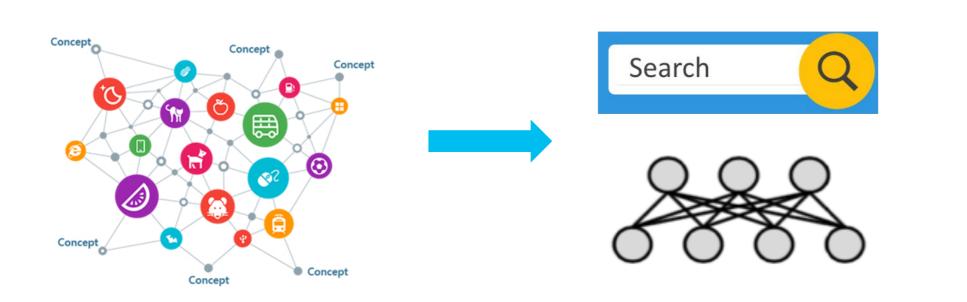
Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval

Zhenghao Liu¹, Chenyan Xiong², Maosong Sun¹, Zhiyuan Liu¹

1.Tsinghua University 2.Carnegie Mellon University

Motivation and Background

- Queries and documents often match based on knowledge
 - Query: "Meituxiuxiu web version"
 - Document: "Meituxiuxiu web version: An online picture processing tools"
 - Meituxiuxiu web version: Meituxiuxiu is the most popular Chinese image processing software, launched by the Meitu company
- Our motivation is to study the effectiveness of knowledge graph semantics in state-of-the-art neural ranking models



Experimental Results

Overall Performance

	Testing-SAME				Testing-DIFF				Testing-RAW	
Method	NDCG@1		NDCG@10		NDCG@1		NDCG@10		MRR	
BM25	0.142	-46%	0.287	-32%	0.163	-46%	0.325	-23%	0.228	-34%
RankSVM	0.146	-45%	0.309	-26%	0.170	-43%	0.352	-17%	0.224	-35%
Coor-Ascent	0.159	-40%	0.355	-15%	0.209	-30%	0.378	-11%	0.242	-30%
DRMM	0.137	-48%	0.313	-25%	0.213	-29%	0.359	-15%	0.234	-32%
CDSSM	0.144	-46%	0.333	-21%	0.183	-39%	0.353	-16%	0.231	-33%
MP	0.218	-17%	0.379	-10%	0.197	-34%	0.345	-18%	0.240	-30%
K-NRM	0.265	—	0.420	—	0.300	—	0.423	—	0.345	—
Conv-KNRM	0.336	27%	0.481	15%	0.338	13%	0.432	2%	0.358	4%
EDRM-KNRM	0.310	17%	0.455	8%	0.333	11%	0.434	3%	0.362	5%
EDRM-CKNRM	0.340	28%	0.482	15%	0.371	24%	0.451	7%	0.389	13%

On Testing-SAME

- Significant improvement compared to K-NRM
- Little improvement compared to Conv-KNRM
- Conv-KNRM is able to learn phrases matches (entity) from data

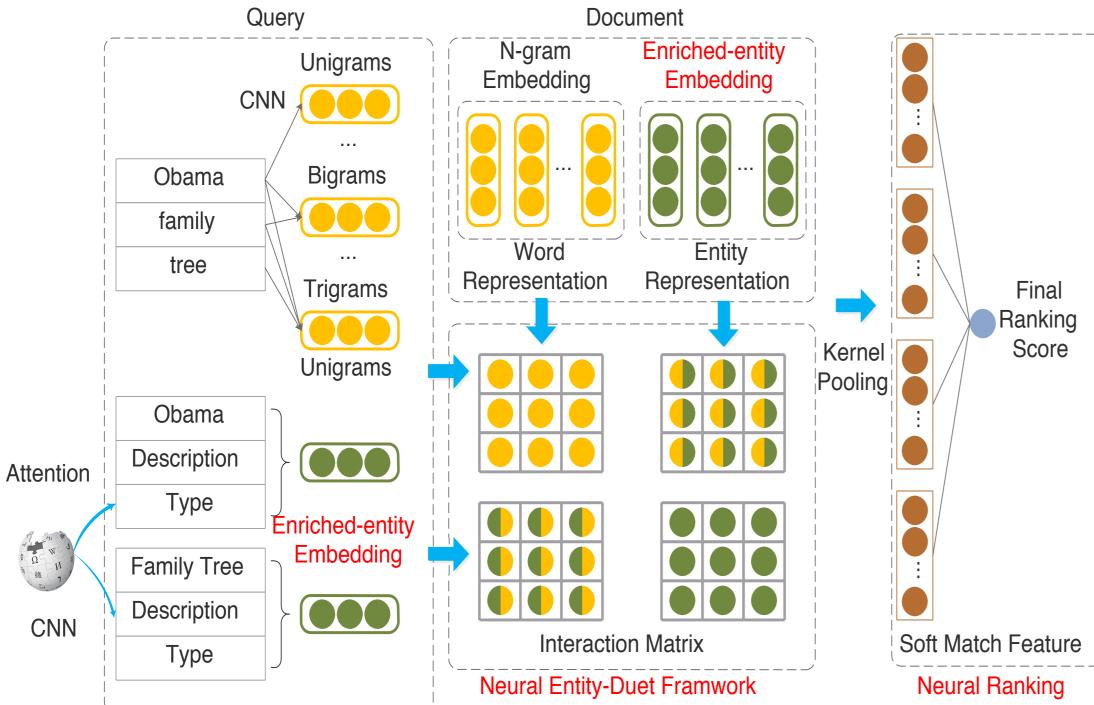
On Testing-DIFF and Testing-RAW

• Significant improvement compared to K-NRM and Conv-KNRM

Entity-Duet Neural Ranking Model (EDRM)

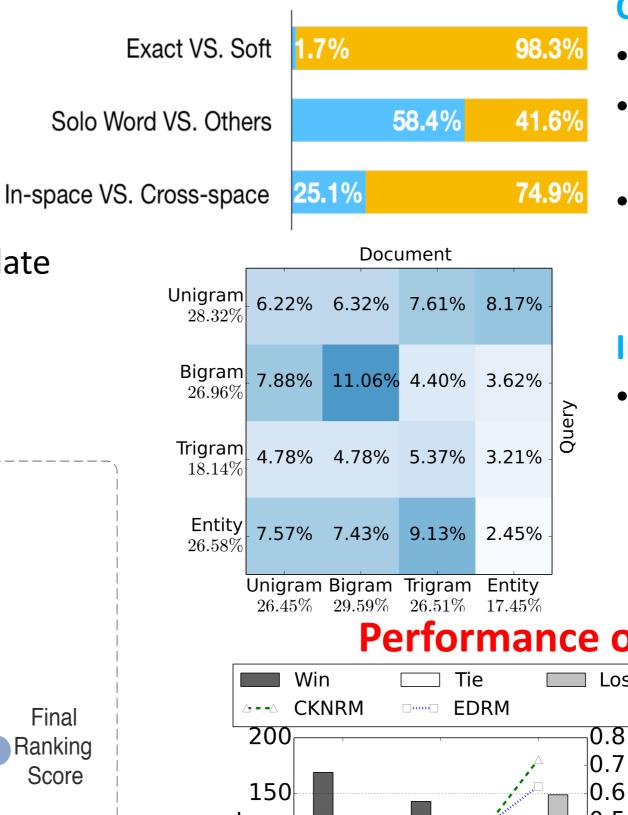
Enriched-entity Embedding

- Integration of knowledge graph semantics
- Neural Entity-Duet Framework
 - Multi-level soft matches in the embedding space
- Integration with Kernel based Neural Ranking (K-NRM)
 - K-NRM and Conv-KNRM are state-of-the-arts, which calculate n-gram and entity cross matches with Gaussian Kernels
 - K-NRM -> EDRM-KNRM
 - Conv-KNRM->EDRM-CKNRM



• EDRM shows generalization ability

Ranking contribution for EDRM-CKNRM

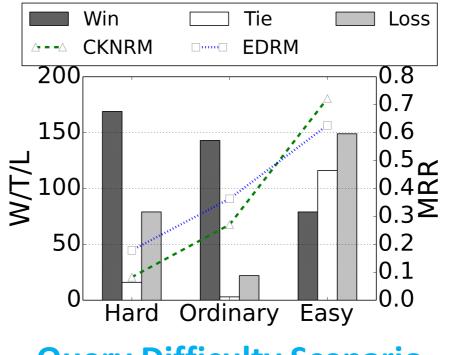


Overall kernel weight

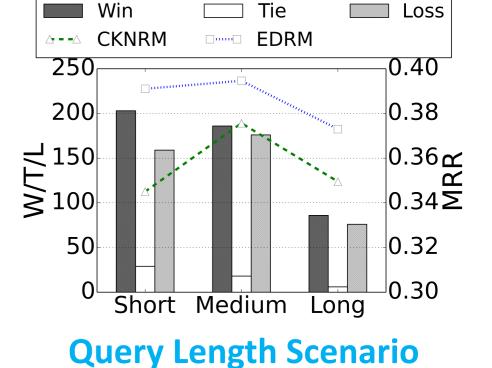
- Most of the weight goes to soft match
- Entity related matches play an important role
- Cross-space matches are more important

Individual kernel weight

 N-grams and entities are important components which share almost uniformly distributed weight



Performance on Different Scenarios



Query Difficulty Scenario

• Greatest improvement on short and hard queries

Experimental Methodology

• Dataset:

- Sogou query log
- About 100K training queries and 1K testing queries
- Knowledge Graph:
 - CN-DBpedia, a Chinese knowledge graph
 - Entities in both queries and documents are linked with CMNS
- End-to-end Training:
 - Train on relevance labels estimated by a click model (DCTR), about 8500k training pairs
 - Test on two click model labels (DCTR->Testing-SAME and TACM->Testing-DIFF) and raw user clicks (Testing-RAW)

• Knowledge are more crucial for the limited query text

Conclusion

• Knowledge based Neural Ranking Model:

- Integrate knowledge graph semantics in state-ofthe-art neural ranking models
- Entity types and descriptions are external embeddings to match entities and n-grams

Codes

Paper

- End-to-end Training with User Clicks:
 - A data-driven combination of entity-oriented search and neural information retrieval
- Effectiveness and Generalization ability:
 - Show greater advantage on hard and short queries
 - Improve performances on more difficult testing scenarios

ACL 2018

Email: liu-zh16@mails.tsinghua.edu.cn