





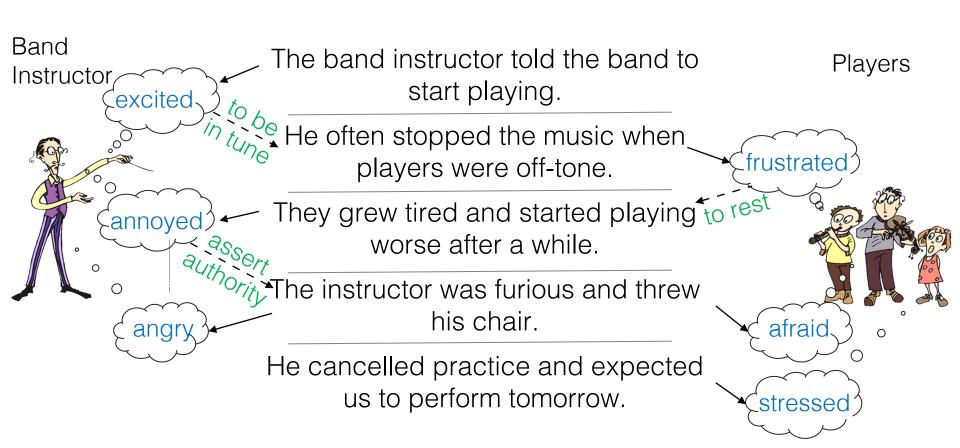
Information Sciences Institute

# Modeling Naive Psychology of Characters in Simple Commonsense Stories

Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin Knight & Yejin Choi

Paul G. Allen School of Computer Science and Engineering, University of Washington
Allen Institute for Artificial Intelligence
Information Sciences Institute, University of Southern California

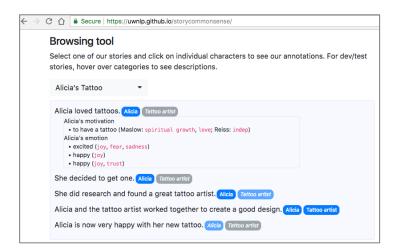
# Inferring Character State



## Reasoning about Naïve Psychology

#### New Story Commonsense Dataset:

- Open text + psychology theory
- Complete chains of mental states of characters
- Implied changes to characters
- Contextualized reasoning

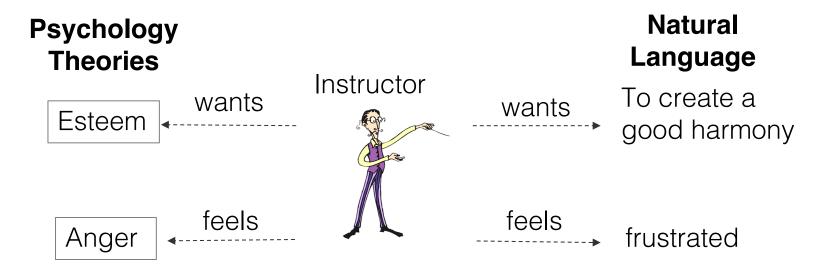


https://uwnlp.github.io/storycommonsense/

# How do we represent naïve psychology?

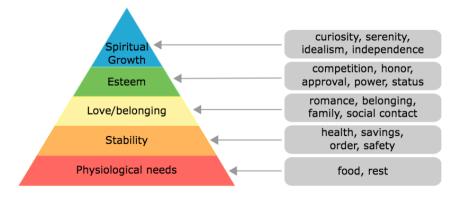
The band instructor told the band to start playing.

He often stopped the music when players were off-tone.



## Naïve Psychology Annotations

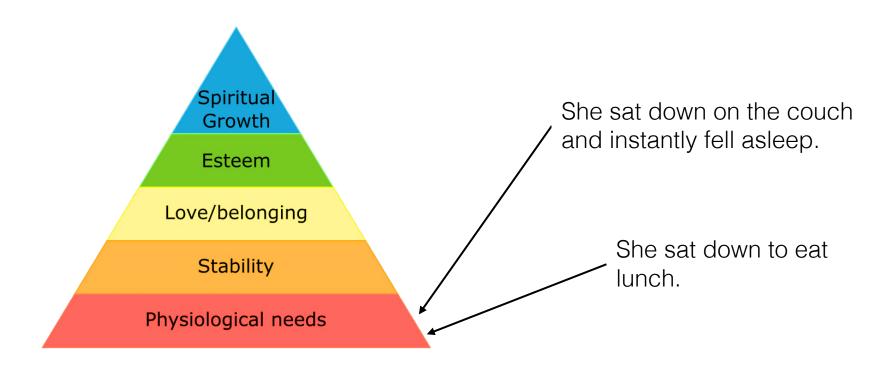
- Motivation:
  - Causal source to actions
  - Motivational theories



- Emotional Reaction:
  - Causal effect of actions
  - Theories of emotion



## Motivation: Maslow Hierarchy of Needs (1943)



# Motivation: Reiss Categories (2004)



## Emotional Reaction: Plutchik (1980)

#### Plutchik's Wheel

8 "main" emotions:



Their favorite uncle died.



Suddenly, they heard a loud noise.



## Implicit Mental State Changes

The band instructor told the band to start playing.

He often stopped the music when players were off-tone.

They grew tired and started playing worse after a while.

The instructor was furious and threw his chair.

How are players affected?

- → implicitly involved
- → inference in these cases

## Tracking Mental States

The band instructor told the band to start playing.

He often stopped the music when players were off-tone.

They grew tired and started playing worse after a while.

The instructor was furious and threw his chair.

He cancelled practice and expected us to perform tomorrow.

Why does the instructor cancel practice?

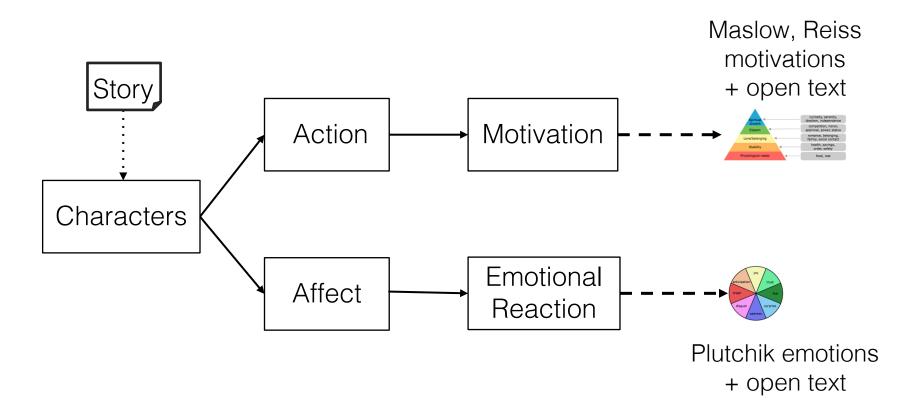
- → based on previous info
- → need to incorporate context

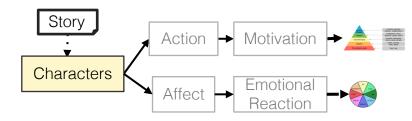
#### Related Work

- Reasoning about narratives (Mostafazadeh et al 2016)
- Detecting emotional content (Mohammad et al 2013) or stimuli (Gui et al 2017) of a statement

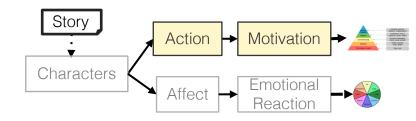
#### Our work:

- Both motivation and emotion for a character's outlook
- Leverage psychology theories and natural language explanations

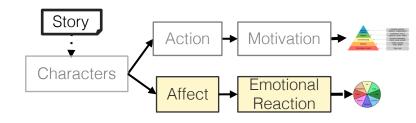




Sarah is swimming. Sarah gets attacked by a shark. Sarah fights off the shark. Sarah escapes the attack. Sarah lost her eye battling the shark. Sarah: {1,2,3,4,5} Characters A Shark: {2,3,5}



Sarah is swimming. Sarah gets attacked by a shark. Sarah fights off the shark. Motivation Action Sarah: Stability Is Sarah taking "to escape to safety" action: Yes



Sarah is swimming. Sarah gets attacked by a shark. Sarah fights off the shark. **Emotional** Affected Reaction Shark Does the Shark Anger, have a reaction? "aggressive" Yes

## Data Collection Summary

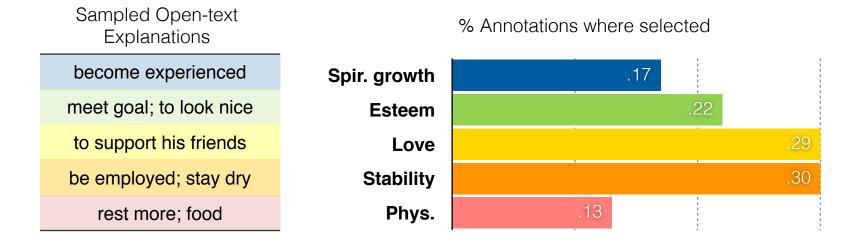
Over 300k low-level annotations for 15k stories from ROC training set

|                              | Open-text | Open-text + categories |      |                          |
|------------------------------|-----------|------------------------|------|--------------------------|
|                              | train     | dev                    | test |                          |
| # character-line pairs       | 200k      | 25k                    | 23k  |                          |
| w/ motivation change         | 40k       | 9k                     | 7k   | >50k motiv.<br>changes   |
| w/ emotional reaction change | 77k       | 15k                    | 14k  | >100k emotion<br>changes |

## Annotated Data Distributions (Motivation)



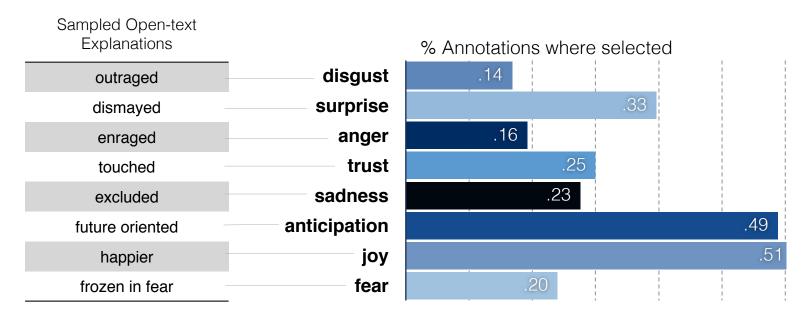
- Fair amount of diversity in the open-text
- ~1/3 have positive motivation change:



## Annotated Data Distributions (Emotion)



- Lots of happy stories
- ~2/3 have positive emotion change:



#### **New Tasks**

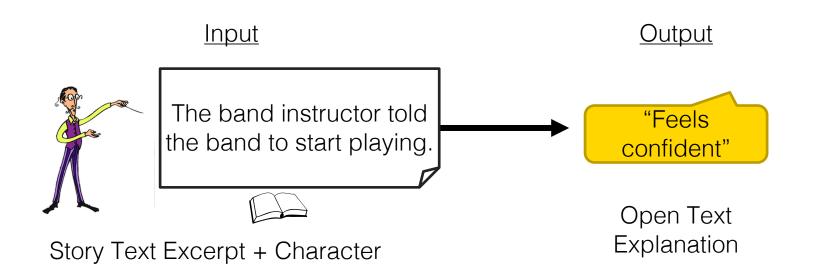
Given a story excerpt and a character can we explain the mental state:

Explanation Generation: Generate open-text explanation of motivation/emotional reaction

State Classification: Predict Maslow/Reiss/Plutchik category

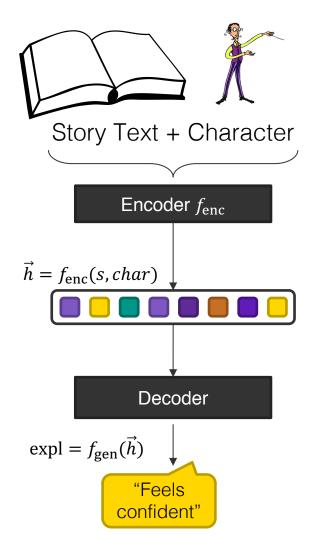
## Task 1 - Explanation Generation

Explain mental state of character using natural language



## Modeling

- Using encoder-decoder framework
- Encoders LSTM, CNN, REN, NPN
- Decoder for generation: single layer LSTM



## **Encoding Modules**

Given entity  $e_j$  and line  $x^s$  (and entity-specific context sentences  $x^c[e_i]$ )

$$h = f_{\mathrm{enc}}(x^{s}, x^{c}[e_{i}])$$

#### Encoding functions:

 CNN, LSTM: encode last line and context -- concatenate

# **Entity Modeling**

- Recurrent Entity Networks (Henaff et al 2017)
  - Store separate memory cells for each story character
  - Update after each sentence with sentence-based hidden states

- Neural Process Networks (Bosselut et al 2018)
  - Also has separate representations for each character
  - Updates after each sentence using learned action embeddings

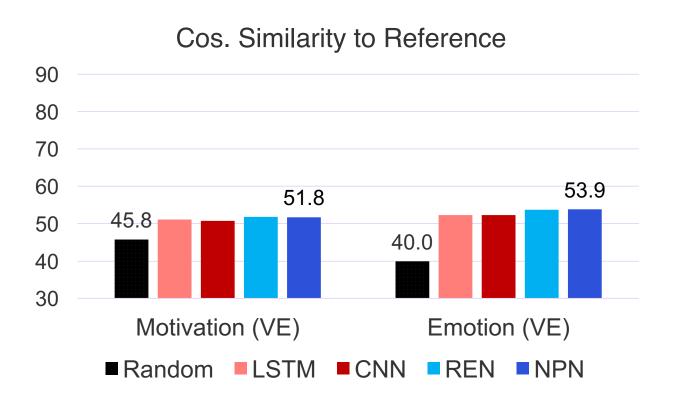
## Explanation Generation Set-up

Evaluation: Cosine similarity of generated response to reference

Random baseline: Select random answer from dev set

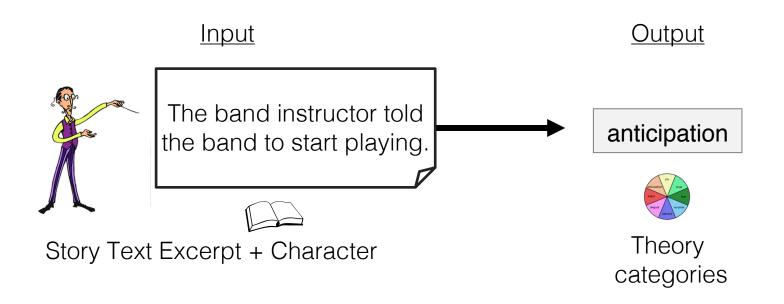
- Responses are short/formulaic
- Words for describing intent/emotion are close in embedding space

## **Explanation Generation Results**



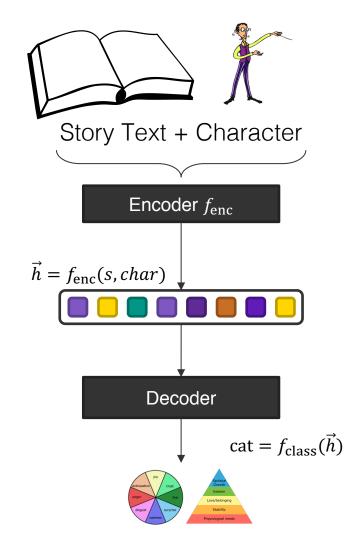
## Task 2 – Mental State Classification

Predicting psychological categories for mental state



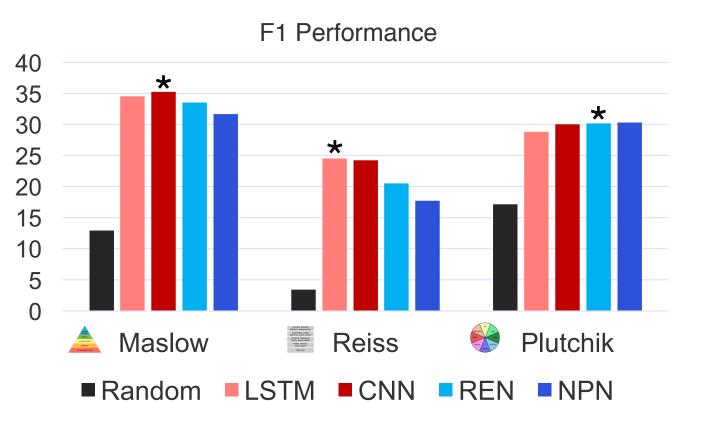
## Modeling

- Using encoder-decoder framework
- Encoders LSTM, CNN, REN, NPN
- Decoder for categorization:
   logistic regression

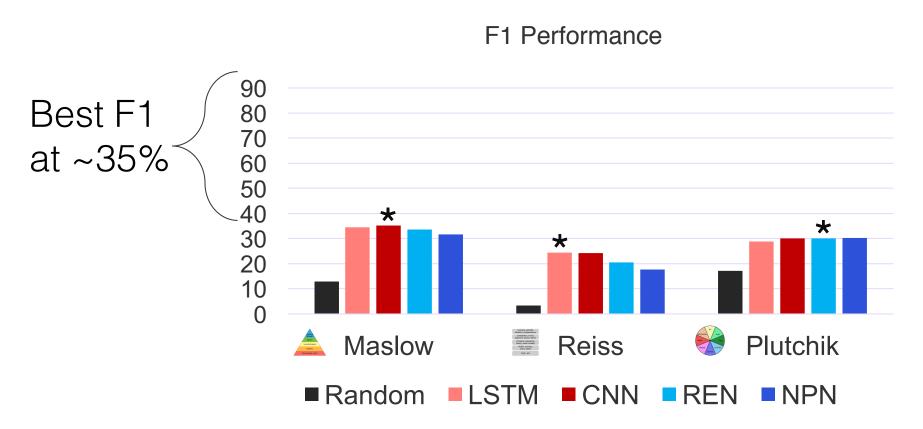


#### State Classification Results

- CNN and LSTM perform best on motivation categories
- Entity
   modeling has
   slight
   improvement
   in Plutchik



## Further Improvement

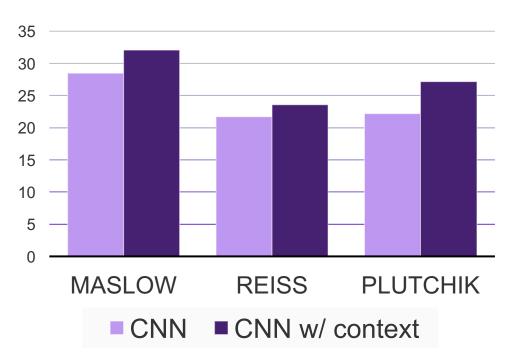


## Effect of Entity Specific Context

Including previous lines from context that include entity

Entity specific context: improves all models F1 by about 3-5%

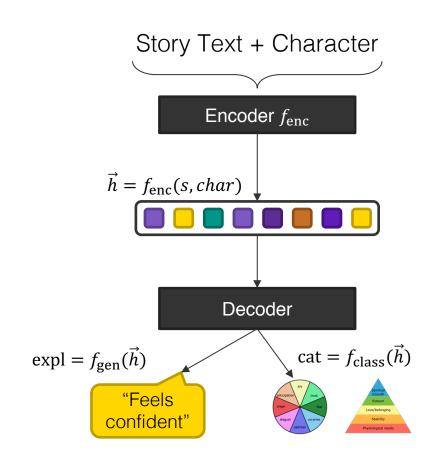




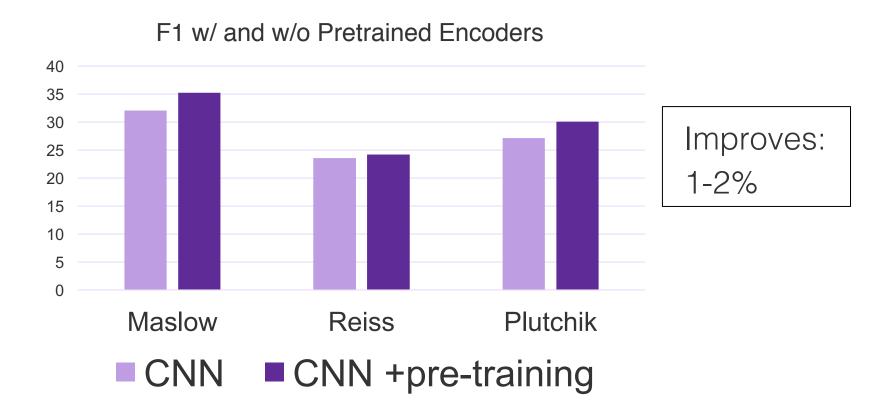
## Pre-training Encoders

We have more open-text explanations than category annotations:

- 1. Pre-train encoders on opentext explanations
- 2. Fine-tune with the categorical labels



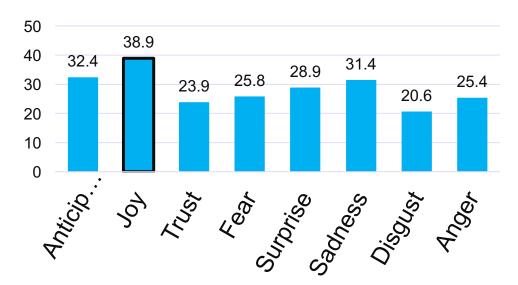
#### Effect of Pretrained Encoders

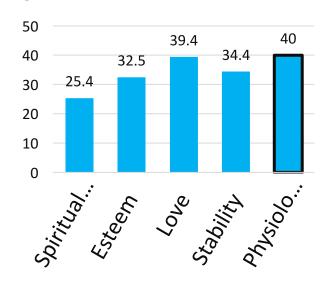


## Performance Per Category

#### Highest performance:

- Frequent classes (eg. "joy" F1: 38.9%)
- Very concrete sets of actions ("physiological" F1: 40%)





#### **Future Work**

 Outside Knowledge: Help with infrequent classes and subtle implied changes

 Social Commonsense: Help with inferring mental state especially in more contextual cases

 Potential Applications: Improving language models, chat systems, natural language understanding

## Conclusions

- New Dataset:
  - 15k roc stories annotated per character
    - >50k motivation changes
    - >100k emotions changes
  - o https://uwnlp.github.io/storycommonsense/