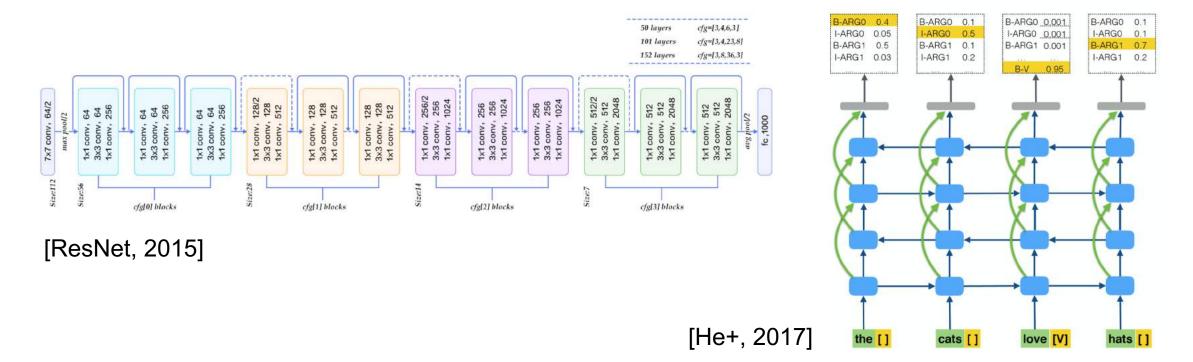


Distilling Knowledge for Search-based Structured Prediction

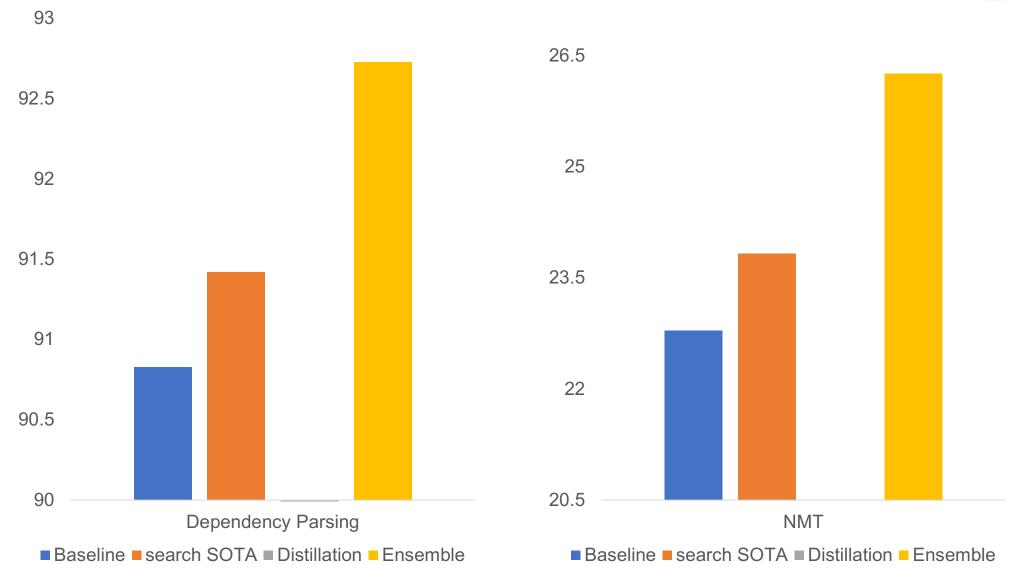
Yijia Liu*, Wanxiang Che, Huaipeng Zhao, Bing Qin, Ting Liu Research Center for Social Computing and Information Retrieval Harbin Institute of Technology

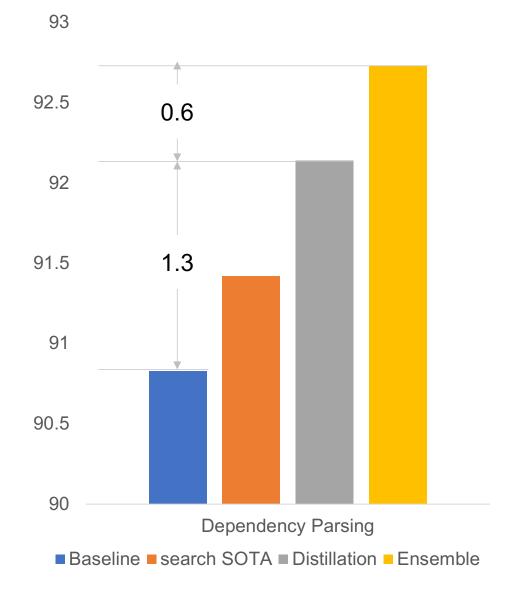
Complex Model Wins

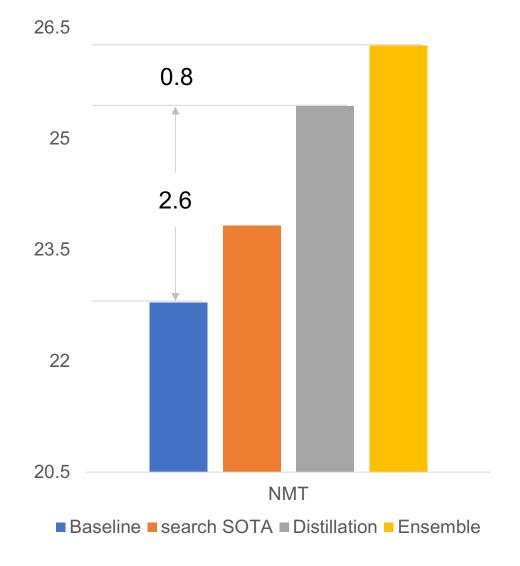


Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation

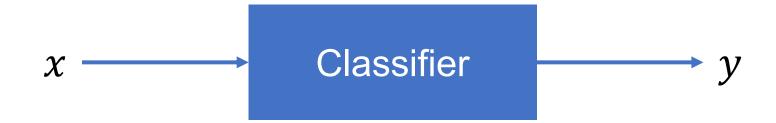
Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, Ting Liu



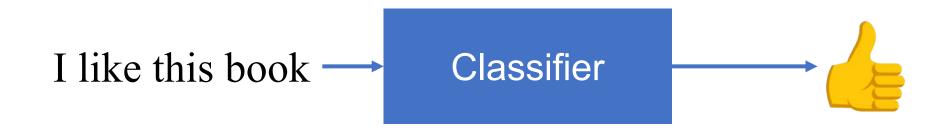




Classification vs. Structured Prediction

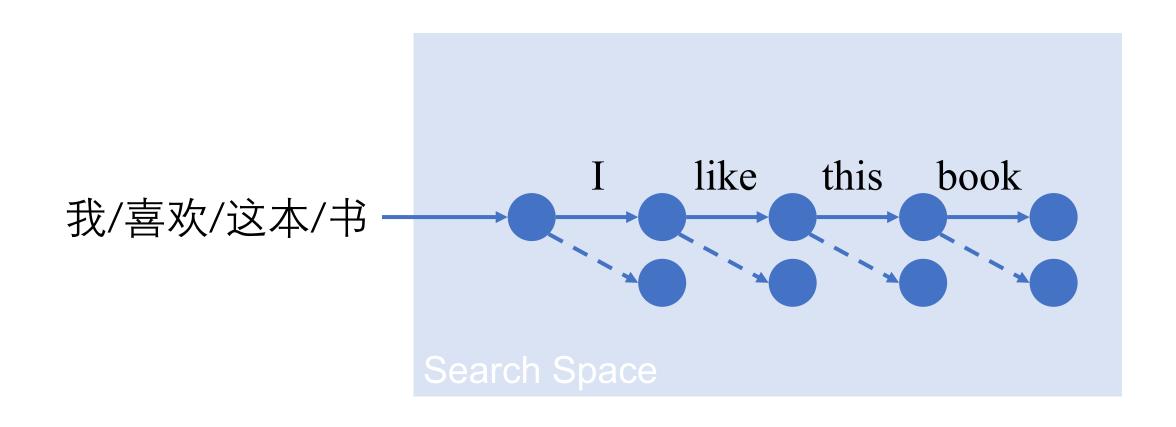


Classification vs. Structured Prediction

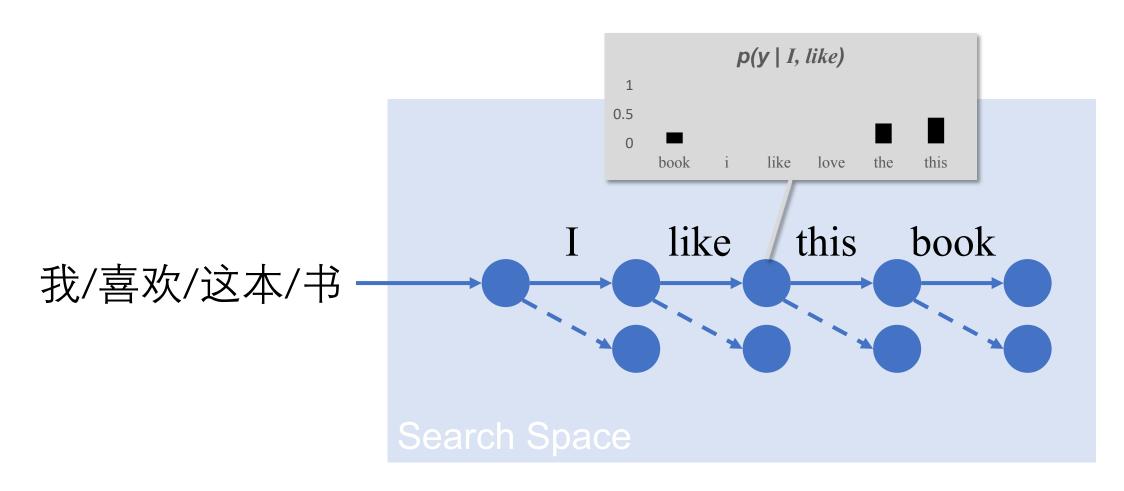


我/喜欢/这本/书 → Structured Predictor → I like this book

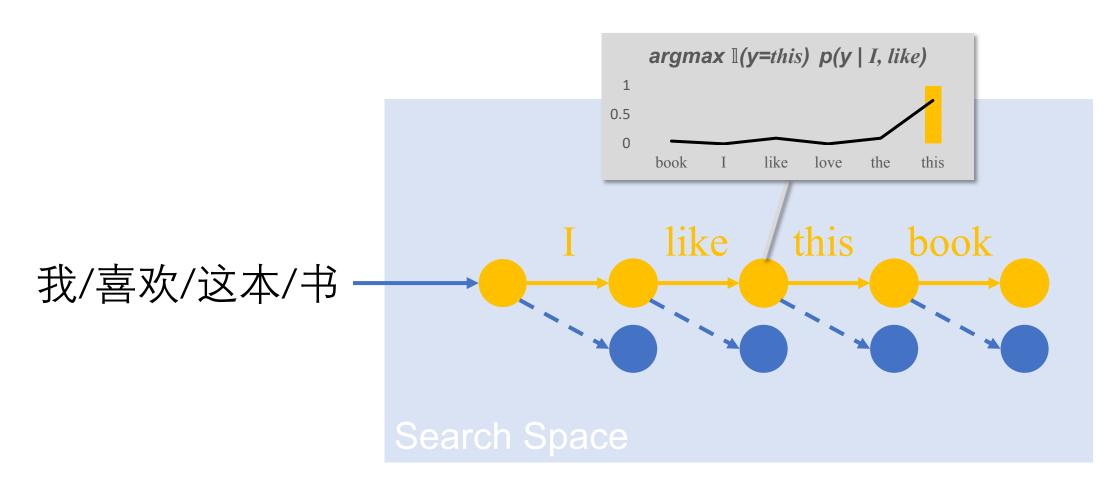
Search-based Structured Prediction



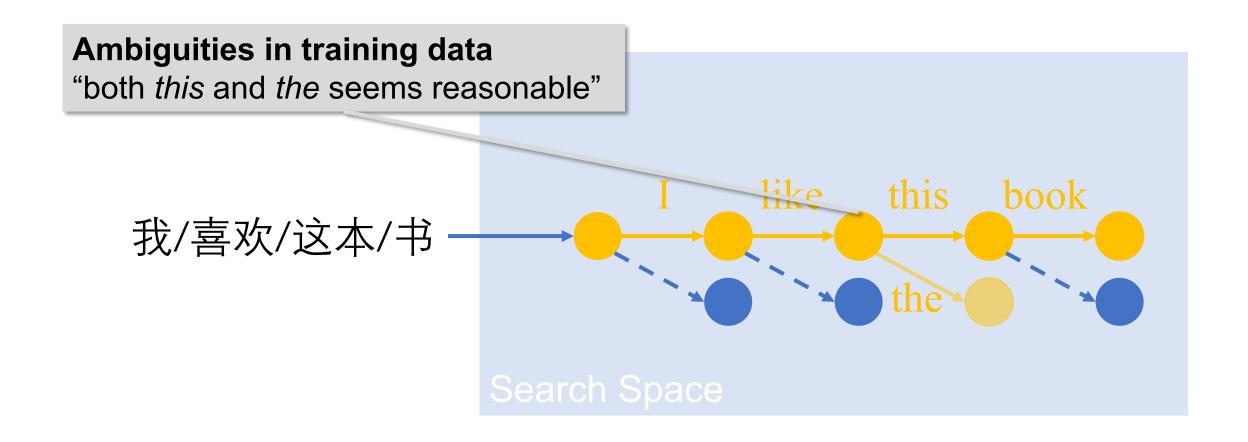
$p(a \mid s)$ that Controls Search Process



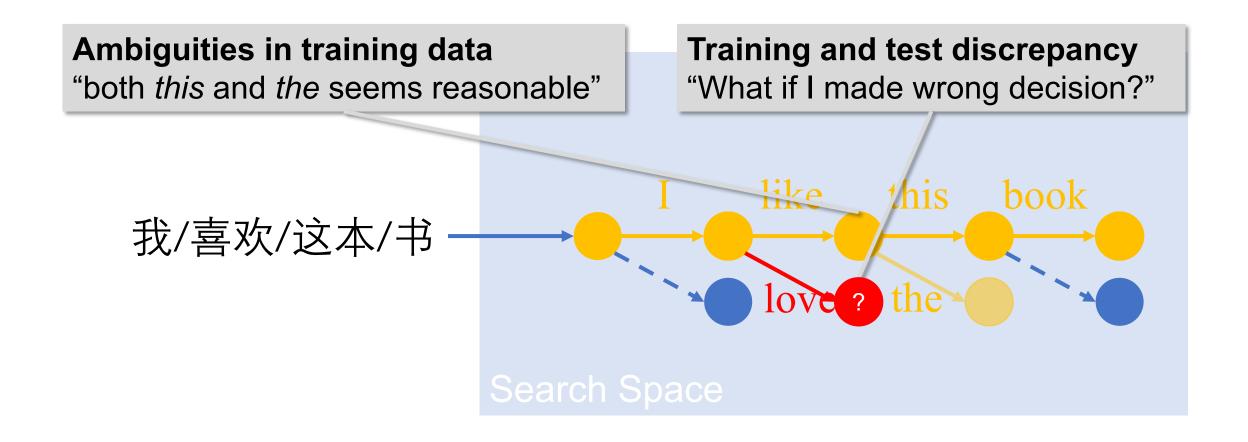
Generic $p(a \mid s)$ Learning Algorithm



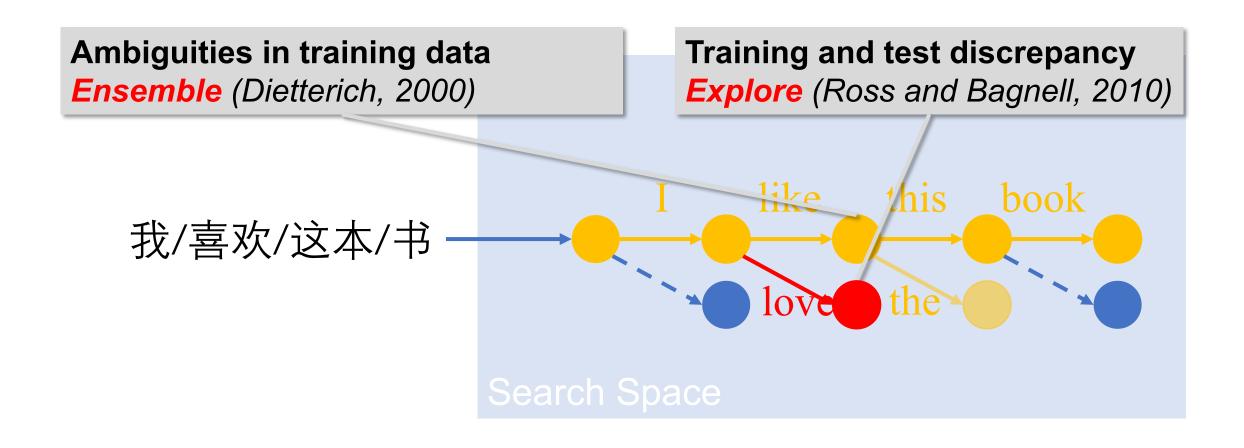
Problems of the Generic Learning Algorithm



Problems of the Generic Learning Algorithm



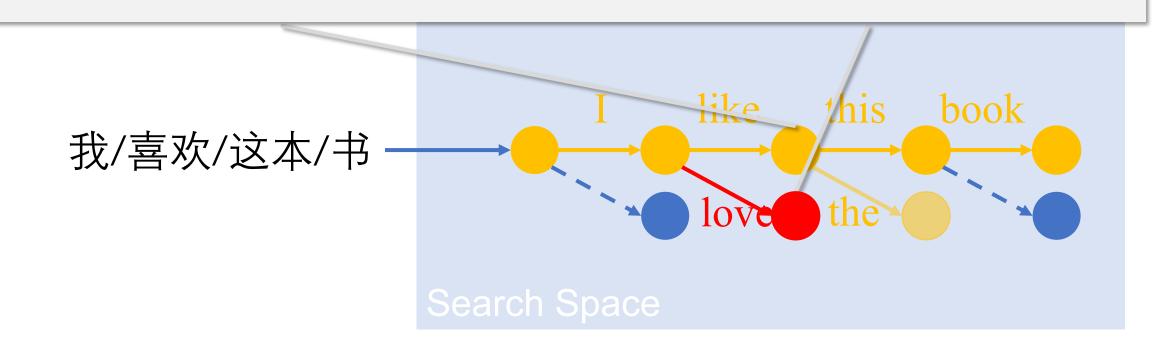
Solutions in Previous Works



Where We Are

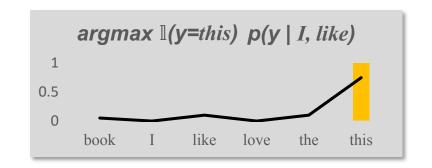
Ambiguities in training data

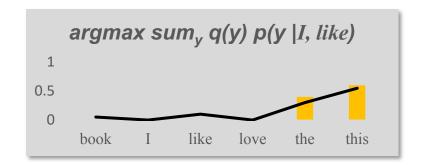
Training and test discrepancy



Knowledge Distillation

Learning from negative log-likelihood Learning from knowledge distillation



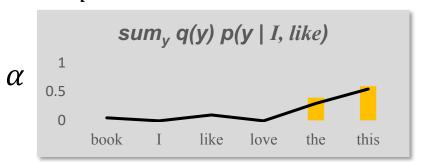


q(y | I, like) is the output distribution of a **teacher** model (e.g. ensemble)

On supervised data $argmax_p$

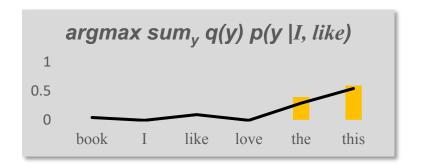
+

$$(1-\alpha)^{1}_{0.5}$$
book I like love the this



Knowledge Distillation: from Where

Learning from knowledge distillation

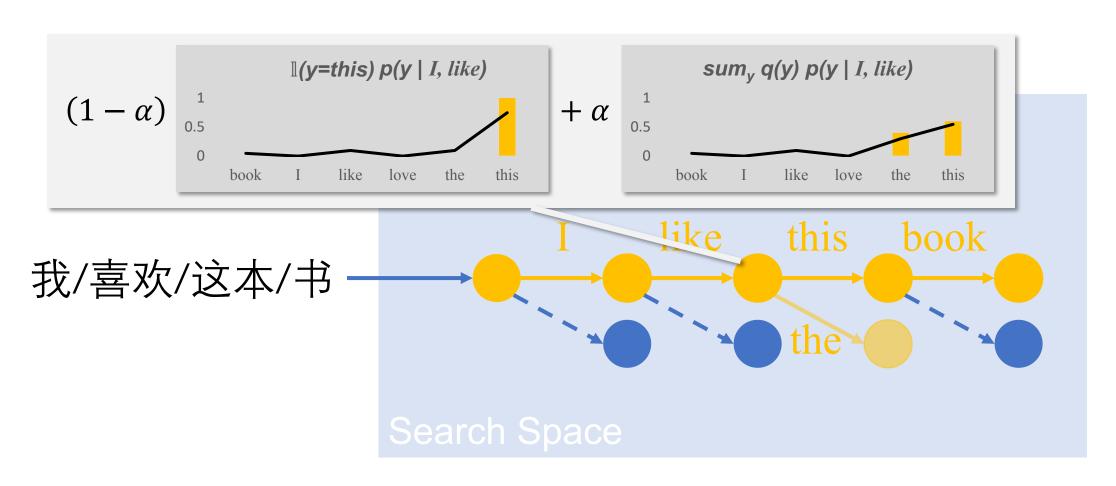


Ambiguities in training data

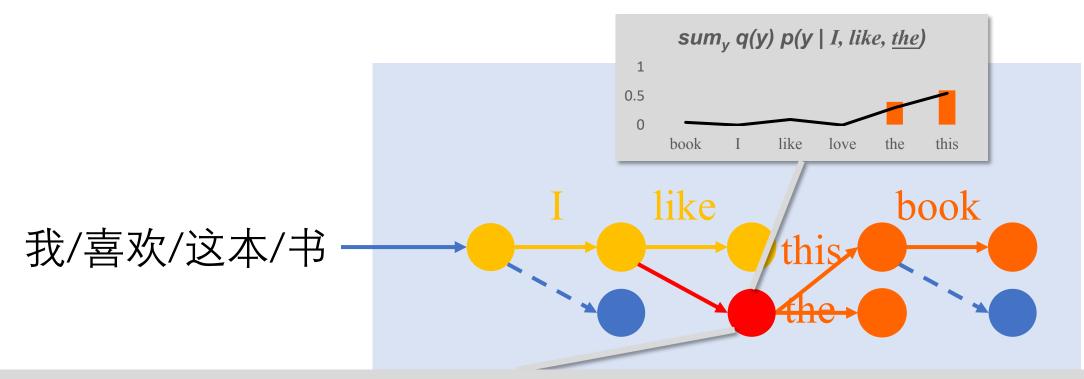
Ensemble (Dietterich, 2000)

We use ensemble of M structure predictor as the teacher q

KD on Supervised (reference) Data



KD on Explored Data



Training and test discrepancy

Explore (Ross and Bagnell, 2010)

We use *teacher q* to explore the search space & learn from KD on the explored data

We combine KD on reference and explored data

$$D \leftarrow \emptyset$$
;

for $n \leftarrow 1...N$ do

$$t \leftarrow 0, s_t \leftarrow s_0(\mathbf{x}^{(n)});$$

while $s_t \notin \mathcal{S}_T$ do

if distilling from reference then

$$a_t \leftarrow \pi_{\mathcal{R}}(s_t, \mathbf{y}^{(n)});$$

else

$$a_t \leftarrow \pi_{\mathcal{E}}(s_t);$$

$$D \leftarrow D \cup \{s_t\}, s_{t+1} \leftarrow \mathcal{T}(s_t, a_t), t \leftarrow t + 1;$$

if distilling from reference then

optimize
$$\alpha \mathcal{L}_{KD} + (1 - \alpha) \mathcal{L}_{NLL}$$
;

else

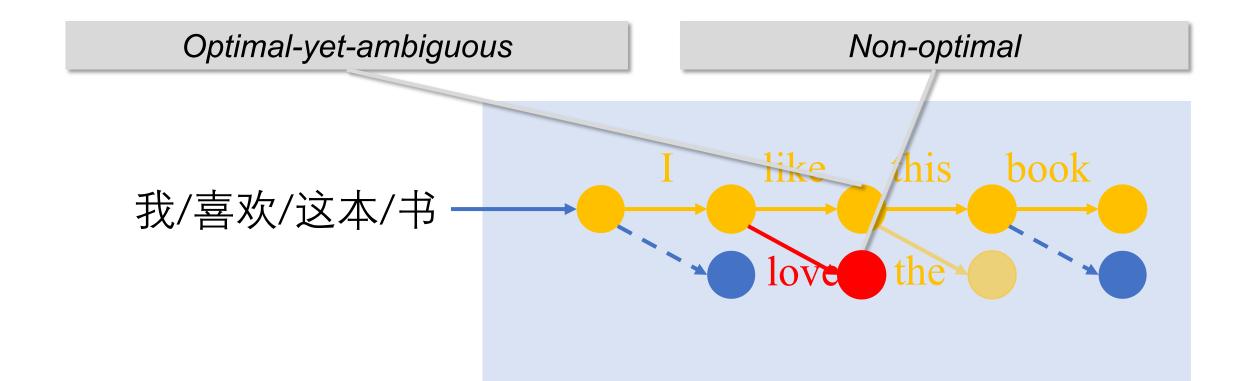
optimize
$$\mathcal{L}_{KD}$$
;

Experiments

Transition-based Dependency Parsing Penn Treebank (Stanford dependencies)	LAS	Neural Machine Translation IWSLT 2014 de-en	BLEU
Baseline	90.83	Baseline	22.79
Ensemble (20)	92.73	Ensemble (10)	26.26
Distill (reference, $\alpha = 1.0$)	91.99	Distill (reference, $\alpha = 0.8$)	24.76
Distill (exploration)	92.00	Distill (exploration)	24.64
Distill (both)	92.14	Distill (both)	25.44
Ballesteros et al. (2016) (dyn. oracle)	91.42	MIXER (Ranzato et al. 2015)	20.73
Andor et al. (2016) (local, B=1)	91.02	Wiseman and Rush (2016) (local B=1)	22.53
		Wiseman and Rush (2016) (global B=1)	23.83

Analysis: Why the Ensemble Works Better?

• Examining the ensemble on the "problematic" states.

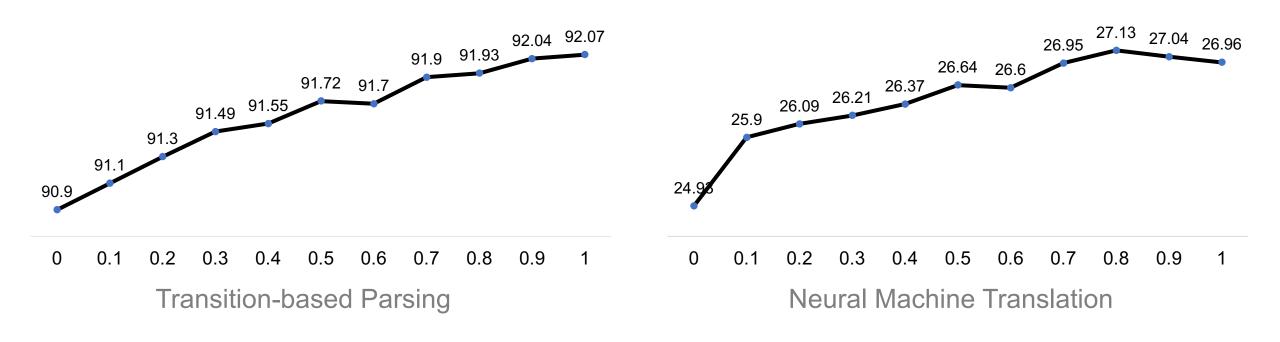


Analysis: Why the Ensemble Works Better?

- Examining the ensemble on the "problematic" states.
- Testbed: Transition-based dependency parsing.
- Tools: dynamic oracle, which returns a set of reference actions for one state.
- Evaluate the output distributions against the reference actions.

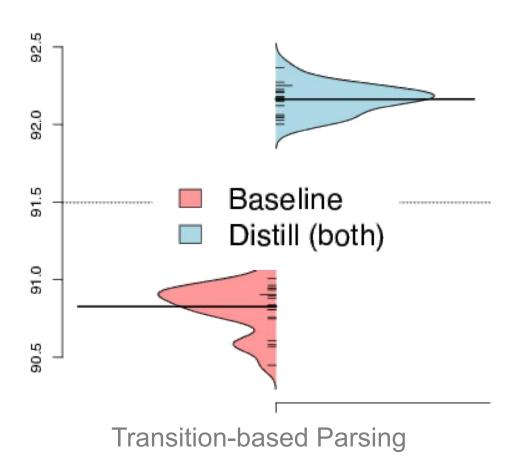
	optimal-yet-ambiguous	non-optimal	
Baseline	68.59	89.59	-
Ensemble	74.19	90.90	

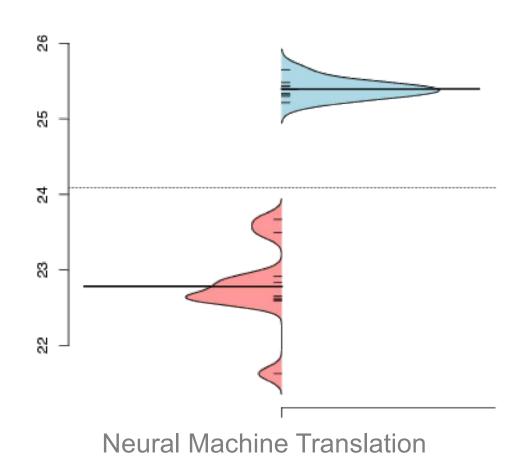
Analysis: Is it Feasible to Fully Learn from KD w/o NLL?



Fully learning from KD is feasible

Analysis: Is Learning from KD Stable?





Conclusion

- We propose to distill an ensemble into a single model both from reference and exploration states.
- Experiments on transition-based dependency parsing and machine translation show that our distillation method significantly improves the single model's performance.
- Analysis gives empirically guarantee for our distillation method.

Thanks and Q/A