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Introduction

Target-Oriented Sentiment Classification (TOSC) is to detect the
overall opinions / sentiments of the user review towards the given opinion
target.

TOSC is a supporting task of Target / Aspect-based Sentiment
Analysis [5].

TOSC has been investigated extensively in other names:

– Aspect-level Sentiment Classification [1, 7, 10, 11, 12].
– Targeted Sentiment Prediction [6, 14].
– Target-Dependent Sentiment Classification [2, 9].
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Problem Formulation

TOSC is a typical classification task but the input texts come from
two sources:

1 Target: explicitly mentioned phrase of opinion target, also called
“aspect term” or “aspect”.

2 Context: the original review sentence or the sentence without target
phrase.

TOSC is to predict the overall sentiment of the context towards the
target.

Example

[Boot time] is super fast, around anywhere from 35 seconds to 1 minute.

– This review conveys positive sentiment over the input “Boot time”.

Great [food] but the [service] is dreadful.

– Given the target “food”, the sentiment polarity is positive while if the
input target is “service”, it becomes negative.
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Motivation

1 Convolutional Neural Network (CNN) is more suitable for this task
than Attention-based Models [1, 6, 7, 10, 11, 12, 13].

– Sentiments towards the targets are usually determined by key phrases.

Example: This [dish]
::::::::::
is my favorite and I always get it and never get

tired of it.
CNN whose aim is to capture the most informative n-grams (e.g., “is
my favorite”) in the sentence should be a suitable model.

– Attention-based weighted combination of the entire word-level features
may introduce some noises (e.g., “never” and “tired” in above
sentence).
We employ proximity-based CNN rather than attention-based RNN as
the top-most feature extractor.
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Motivation

2 CNN likely fails in cases where a sentence expresses different
sentiments over multiple targets.

– Example:
::::

great [food] but the [service] was
:::::::
dreadful!

– CNN cannot fully explore the target information via vector
concatenation.

– Combining context information and word embedding is an effective way
to represent a word in the convolution-based architecture [4]
Our Solution:

(i) We propose a “Target-Specific Transformation” (TST) component to
better consolidate the target information with word representations.

(ii) We design two context-preserving mechanisms “Adaptive Scaling”
(AS) and “Loseless Forwarding” (LF) to combine the contextualized
representations and the transformed representations.
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Motivation

3 Most of the existing works do not discriminate different words in the
same target phrase

– In the target phrase, different words would not contribute equally to
the target representation.

– For example, in “amd turin processor”, phrase head “processor” is
more important than “amd” and “turin”.
Our TST solves this problem in two steps:

(i) Explicitly calculating the importance scores of the target words.
(ii) Conducting word-level association between the target and its context.
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Model Overview
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Figure: Architecture of TNet.
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Model Overview

The proposed TNet consists of the following three components:

1 (BOTTOM) Bi-directional LSTM for memory building

– Generating contextualized word representations.

2 (MIDDLE) Deep Transformation architecture for learning
target-specific word representations

– Refining word-level representations with the input target and the
contextual information.

3 (TOP) Proximity-based convolutional feature extractor.

– Introducing position information to detect the most salient features
more accurately.
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Deep Transformation Architecture

Deep Transformation Architecture stacks multiple Context-Preserving
Transformation (CPT) layers

– Deeper network helps to learn more abstract features (He et al.,
CVPR 2016; Lecun et al., Nature 2015).
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CPT Layer

The functions of the CPT layer are two folds:

1 Incorporating opinion target information into
the word-level representations.

– Generating context-aware target
representations rτi conditioned on the i-th

word representation h
(l)
i fed to the l-th layer:

rτi =
m∑
j=1

hτj ∗ F(h
(l)
i , h

τ
j ),

F(h
(l)
i , h

τ
j ) =
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(l)>
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i hτk )
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– Obtaining target-specific word representations
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Figure: Target-Specific
Transformation (TST)
component
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CPT Layer

2 Preserving context information for the upper layers
– We design two Context-Preserving Mechanisms to add context

information back to the transformed word features h̃
(l)
i

(i) Adaptive Scaling (AS) (Similar to Highway Connection [8]):

t
(l)
i = σ(Wtransh

(l)
i + btrans),

h
(l+1)
i = t

(l)
i � h̃

(l)
i + (1− t

(l)
i )� h

(l)
i .

(ii) Lossless Forwarding (LF) (Similar to Residual Connection [3]):

h
(l+1)
i = h

(l)
i + h̃

(l)
i .
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Proximity-based Convolutional Feature Extractor

This component aims to capture the most salient feature w.r.t. the
current target for sentiment prediction.

As observed in (Chen et al., 2017; Li and Lam, 2017), distance
information is effective for better locating the salient features.

– Basic idea: Up-weighting the words close to the target and
down-weighting those far away from the target.

Convolutional neural network (Kim, 2014) is used to extract features
from the weighted word representations.

Xin Li, Lidong Bing, Wai Lam, Bei Shi Transformation Networks for Target-Oriented Sentiment ClassificationACL 2018 17 / 25



Outline

1 Target-Oriented Sentiment Classification
Introduction
Problem Formulation

2 Transformation Networks for Target-Oriented Sentiment Classification
Motivation
The proposed model

3 Experiment
Settings
Comparative Study

Xin Li, Lidong Bing, Wai Lam, Bei Shi Transformation Networks for Target-Oriented Sentiment ClassificationACL 2018 18 / 25



Settings

Datasets

LAPTOP, REST: datasets from SemEval14 ABSA challenge, containing
the user reviews from laptop domain and restaurant domain
respectively.

TWITTER: a dataset built in (Dong et al., 2014), containing twitter
posts and the opinion targets are annotated.

Compared Models

Traditional Models:
– SVM (Kiritchenko et al., 2014).

Attention-based Models:
– ATAE-LSTM (Wang et al., 2016), MemNet (Tang et al., 2016), IAN

(Ma et al., 2017), BILSTM-ATT-G (Liu and Zhang, 2017), RAM
(Chen et al., 2017).

Other Neural Models:
– AdaRNN (Dong et al., 2014), TD-LSTM (Tang et al., 2016),

AE-LSTM (Wang et al., 2016), CNN-ASP
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Main Results

Models
LAPTOP REST TWITTER

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

TNet variants
TNet-LF 76.01†,‡ 71.47†,‡ 80.79†,‡ 70.84‡ 74.68†,‡ 73.36†,‡

TNet-AS 76.54†,‡ 71.75†,‡ 80.69†,‡ 71.27†,‡ 74.97†,‡ 73.60†,‡

Baselines

SVM 70.49\ - 80.16\ - 63.40∗ 63.30∗

AdaRNN - - - - 66.30\ 65.90\

AE-LSTM 68.90\ - 76.60\ - - -
ATAE-LSTM 68.70\ - 77.20\ - - -
IAN 72.10\ - 78.60\ - - -
CNN-ASP 72.46 65.31 77.82 65.11 73.27 71.77
TD-LSTM 71.83 68.43 78.00 66.73 66.62 64.01
MemNet 70.33 64.09 78.16 65.83 68.50 66.91
BILSTM-ATT-G 74.37 69.90 80.38 70.78 72.70 70.84
RAM 75.01 70.51 79.79 68.86 71.88 70.33

The proposed TNet-LF and TNet-AS consistently outperform the
baselines.

– TNet variants perform well on both user reviews (LAPTOP & REST) and
twitter posts (TWITTER).
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Ablation Experiment

Models
LAPTOP REST TWITTER

ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

TNet variants
TNet-LF 76.01†,‡ 71.47†,‡ 80.79†,‡ 70.84‡ 74.68†,‡ 73.36†,‡

TNet-AS 76.54†,‡ 71.75†,‡ 80.69†,‡ 71.27†,‡ 74.97†,‡ 73.60†,‡

CPT Alternatives
LSTM-ATT-CNN 73.37 68.03 78.95 68.71 70.09 67.68
LSTM-FC-CNN-LF 75.59 70.60 80.41 70.23 73.70 72.82
LSTM-FC-CNN-AS 75.78 70.72 80.23 70.06 74.28 72.60

Ablated TNet

TNet w/o transformation 73.30 68.25 78.90 65.86 72.10 70.57
TNet w/o context 73.91 68.87 80.07 69.01 74.51 73.05
TNet-LF w/o position 75.13 70.63 79.86 69.69 73.83 72.49
TNet-AS w/o position 75.27 70.03 79.79 69.78 73.84 72.47

Using attention (ATT) and fully-connected layer (FC) to replace CPT
layer makes the performance worse.

Each component / element in TNet contributes to the overall
performance improvement.
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Impact of CPT layer number

We conduct experiments on the held-out training data of LAPTOP and vary
layer number L from 2 to 10, increased by 2.
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Increasing the layer number can increase the performance but the
results will go down when L ≥ 4 due to the limited training data.
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Case Study

Sentence BILSTM-ATT-G RAM TNet-LF TNet-AS
1. Air has higher [resolution]P but the [fonts]N are small . (N7, N) (N7, N) (P, N) (P, N)

2. Great [food]P but the [service]N is dreadful . (P, N) (P, N) (P, N) (P, N)

3. Sure it ’ s not light and slim but the [features]P make
up for it 100% .

N7 N7 P P

4. Not only did they have amazing , [sandwiches]P ,
[soup]P , [pizza]P etc , but their [homemade sorbets]P
are out of this world !

(P, O7, O7, P) (P, P, O7, P) (P, P, P, P) (P, P, P, P)

5. [startup times]N are incredibly long : over two minutes
.

P7 P7 N N

6. I am pleased with the fast [log on]P , speedy [wifi
connection]P and the long [battery life]P ( > 6 hrs ) .

(P, P, P) (P, P, P) (P, P, P) (P, P, P)

7. The [staff]N should be a bit more friendly . P7 P7 P7 P7

Our TNet can make correct predictions when the opinion is target
specific, e.g., “long” in the 5th and the 6th example.

TNet can capture the salient features for target sentiment prediction
accurately.
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Summary

Our TNet employs CNN as feature extractor to detect the salient
features, avoiding introducing the noises.

Armed with target-specific word representation and proximity
information, the TNet variants can predict the sentiment w.r.t. the
target more accurately.
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