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Introduction

Goal: generate natural language sentences from graphs.

Generation from structured representations.
Neural Machine Translation with source syntax information.

want-01

believe-01

boy girl

AR
G0

ARG1

ARG0ARG1 ⇒ “The boy wants the girl
to believe him.”

Previous work linearise graphs and apply off-the-shelf
sequence-to-sequence networks.
Our approach: replace the sequential encoder with a Gated Graph Neural
Network [Li et al., ICLR 2016].
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Graph Transformations

Standard GGNN caveats:
Parameters increase
quadratically with number of
edge labels.
Does not generate hidden
vectors for edges.
Does not encode sequential
information.

Levi graphs [Levi,1942]

want-01

believe-01

boy girl

AR
G0

ARG1

ARG0ARG
1

⇒
want-01

believe-01

boy

girl

ARG1

ARG0

ARG1

ARG0 Friedrich Wilhelm Levi

(source: University of Leipzig)

For sequential information we add extra edges to the Levi graph.

There is a deeper issue at stake .

ROOT

expl

nsubj

punct

det
amod prep pobj

⇒
There is a deeper issue at stake .

ROOT expl nsubj punct det amod prep pobj

Translation: “Doch steht etwas Grundlegenderes auf dem Spiel .”

Experiments and Discussion
Data and preprocessing
AMR generation: LDC2017T10 with default splits. Graph

simplification and anonymisation [Konstas et al., ACL 2017]
Syntax-based NMT: same settings as in [Bastings et al. EMNLP 2017].

News Commentary V11, English-German and English-Czech.
Source side parsed using SyntaxNet and target side segmented
using Byte-Pair Encoding.

Models
s2s: sequence-to-sequence baseline.
g2s: our graph-to-sequence model.
g2s+: as above but with extra sequential connections.
Main conclusions

g2s consistently outperforms s2s in AMR generation
For NMT, performance drops for standard g2s but g2s+
outperforms the baselines. Sequential biases added as a graph
transformation: no RNNs required in the encoder.

BLEU CHRF++ #params
AMR Generation
s2s 21.7 49.1 28.4M
g2s 23.3 50.4 28.3M
NMT English-German
PB-SMT 12.8 43.2 –
s2s 15.5 40.8 41.4M
g2s 15.2 41.4 40.8M
g2s+ 16.7 42.4 41.2M
NMT English-Czech
PB-SMT 8.6 36.4 –
s2s 8.9 33.8 39.1M
g2s 8.7 32.3 38.4M
g2s+ 9.8 33.3 38.8M


