PROBABILISTIC FASTTEXT FOR MULTI-SENSE WORD EMBEDDINGS

BEN ATHIWARATKUN, ANDREW GORDON WILSON, ANIMA ANANDKUMAR

Cornell University

2-MIN SUMMARY

Probabilistic FastText $=$ FastText + Gaussian Mixture Embeddings

Gaussian Mixture
Embeddings

- Words as probability densities
- Each word = Gaussian Mixture density
- Disentangled meanings

2-MIN SUMMARY

Probabilistic FastText $=$ FastText + Gaussian Mixture Embeddings

Gaussian Mixture Embeddings

- Words as probability densities
- Each word = Gaussian Mixture density
- Disentangled meanings
- Word embeddings: word vectors are derived from subword vectors
- SoA on many benchmarks especially RareWord
- Character based models allow for estimating vectors of unseen words and enhancing

2-MIN SUMMARY

Gaussian Mixture
Embeddings

FastText

Probabilistic FastText (PFT)

PROBABILISTIC FASTTEXT

- Able to estimate distributions of

PROBABILISTIC FASTTEXT

- Able to estimate distributions of
unseen words

dictionary-based embeddings

- High semantic quality for rare words via root sharing

	Spearman Correlation	FastText	PFT
Sp on RareWord dataset	$\mathbf{0 . 4 3}$	$\mathbf{0 . 4 8}$	$\mathbf{0 . 4 9}$

PROBABILISTIC FASTTEXT

- Able to estimate distributions of unseen words

- High semantic quality for rare words via root sharing

	Spearman Correlation	FastText	PFT
Sp on RareWord dataset	$\mathbf{0 . 4 3}$	$\mathbf{0 . 4 8}$	$\mathbf{0 . 4 9}$

- disentangled meanings

Word		Component	Nearest neighbors (cosine similarity)
rock	0	rocks:0, rocky:0, mudrock:0, rockscape:0	
rock	1	punk:0, punk-rock:0, indie:0, pop-rock:0	

PROBABILISTIC FASTTEXT

Spearman Correlation on RareWord dataset

w2gm	FastText	PFT
0.43	0.48	$\mathbf{0 . 4 9}$

- disentangled meanings

| Word | | Component |
| :---: | :---: | :--- | Nearest neighbors (cosine similarity) \(~\left(\begin{array}{cc|l|}\hline rock \& 0 \& rocks:0, rocky:0, mudrock:0, rockscape:0

rock \& 1 \& punk:0, punk-rock:0, indie:0, pop-rock:0\end{array}\right.\)

- Applicable to foreign languages without any changes in model hyperparameters!

Word	Component / Meaning	Nearest neighbors (English Translation)
secondo	$0 / 2$ nd	Secondo (2nd), terzo (3rd), quinto (5th), primo (first)
secondo	$1 /$ according to	conformit (compliance), attenendosi (following), cui (which)
0		

VECTOR EMBEDDINGS \& FASTTEXT

WORD EMBEDDINGS

- word2vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)
vectors

DENSE REPRESENTATION OF WORDS

Meaningful nearest neighbors

Relationship deduction from vector arithmetic

i.e.

China - Beijing ~ Japan - Tokyo

CHAR-MODEL: SUBWORD

 REPRESENTATION$$
\vec{\rho}_{w}=\frac{1}{\left|N G_{w}\right|+1}\left(\vec{v}_{w}+\sum_{g \in N G_{w}} \vec{z}_{g}\right)
$$

FastText (P Bojanowski, 2017)

- representation = average of n-gram vectors
- automatic semantic extraction of stems/prefixes/suffices
w = <abnormal>

$$
\operatorname{N-grams}(w) \ni\{\langle a b, a b n, \ldots,\langle a b n, a b n o r, \ldots,\}
$$

CHAR-MODEL: SUBWORD

 REPRESENTATION FastText(P Bojanowski, 2017)$$
\vec{\rho}_{w}=\frac{1}{\left|N G_{w}\right|+1}\left(\vec{v}_{w}+\sum_{g \in N G_{w}} \vec{z}_{g}\right)
$$

- representation $=$ average of n-gram vectors
- automatic semantic extraction of stems/prefixes/suffices
w = <abnormal>
$\mathrm{N}-\mathrm{grams}(w) \ni\{\langle a b, a b n, \ldots,\langle a b n, a b n o r, \ldots\}$,

cosine similarity between vector and n -gram vectors

SUBWORD CONTRIBUTION TO OVERALL SEMANTICS

FASTTEXT WITH WORD2GM

- Augment Gaussian mixture representation with character-structure (FastText)
- Promote independence: using dictionary-level vectors for other components

SIMILARITY SCORE (ENERGY) BETWEEN DISTRIBUTIONS

vector space

$$
\begin{aligned}
s(u, v) & =\langle\vec{u}, \vec{v}\rangle \\
& =\vec{u} \cdot \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
s(u, v) & =\langle u, v\rangle_{L_{2}} \\
& =\int u(x) v(x) d x
\end{aligned}
$$

ENERGY OF TWO GAUSSIAN MIXTURES

$$
\begin{array}{lr}
f(x)=\sum_{i=1}^{K} p_{i} \mathcal{N}\left(x ; \vec{\mu}_{f, i}, \Sigma_{f, i}\right), g(x)=\sum_{i=1}^{K} q_{i} \mathcal{N}\left(x ; \vec{\mu}_{g, i}, \Sigma_{g, i}\right) \\
\langle f, g\rangle_{L_{2}}=\sum_{j=1}^{K} \sum_{i=1}^{K} p_{i} q_{j} e^{\xi_{i, j}} & \text { total energy = weighted sum of pairwise partial energies } \\
\xi_{i, j}=-\frac{\alpha}{2}\left\|\mu_{f, i}-\mu_{g, i}\right\|^{2} & \text { closed form! }
\end{array}
$$

WORD SAMPLING

I like that rock band

Dataset: ukWac + WackyPedia (3.5 billion tokens)

LOSS FUNCTION

Energy-based Max Margin

word: w

word: w
rock
context
word: c
band
negative
context: c'
high E(w,c) \uparrow

low $E\left(w, c^{\prime}\right)$

Minimize the objective
$L\left(w, c, c^{\prime}\right)=\max \left(0, m-\log E(w, c)+\log E\left(w, c^{\prime}\right)\right)$

MULTIMODAL REPRESENTATION MIXTURE OF GAUSSIANS

$$
\vec{\rho}_{w}=\frac{1}{\left|N G_{w}\right|+1}\left(\vec{v}_{w}+\sum_{g \in N G_{w}} \vec{z}_{g}\right)
$$

Model parameters:

dictionary vectors

$$
\left\{\left\{v_{i}^{w}\right\}_{i=1}^{i=K}\right\}_{w}
$$

char n-gram vectors

$$
\left\{z_{g}\right\}
$$

Model hyperparameters:

$$
\alpha, m
$$

(covariance scale, margin)

TRAINING - ILLUSTRATION

Mixture of Gaussians
Model parameters:

$$
\begin{aligned}
& \text { dictionary vectors } \\
& \qquad\left\{\left\{v_{i}^{w}\right\}_{i=1}^{i=K}\right\}_{w}
\end{aligned}
$$

char n-gram vectors $\left\{z_{g}\right\}$

Train with max margin objective using minibatch SGD (AdaGrad)

TRAINING - ILLUSTRATION

Mixture of Gaussians
Model parameters:
dictionary vectors

$$
\left\{\left\{v_{i}^{w}\right\}_{i=1}^{i=K}\right\}_{w}
$$

char n-gram vectors $\left\{z_{g}\right\}$

TRAINING - ILLUSTRATION

Mixture of Gaussians
Model parameters:
dictionary vectors

$$
\left\{\left\{v_{i}^{w}\right\}_{i=1}^{i=K}\right\}_{w}
$$

char n-gram vectors $\left\{z_{g}\right\}$

Train with max margin objective using minibatch SGD (AdaGrad)

EVALUATION

QUALITATIVE EVALUATION - NEAREST NEIGHBORS

basalt

stone

NEAREST NEIGHBORS

QUANTITATIVE EVALUATION

WORD PAIR		HUMAN SCORE	EMBEDDING SIMILARITY
CUP	COFFEE	6.58	S(CUP, COFFEE) $=0.7$
CUP	SUBSTANCE	1.92	S(CUP, SUBSTANCE) $=0.2$
STOCK	MARKET	8.08	S(STOCK, MARKET) $=0.9$
STOCK	PHONE	1.62	S(STOCK, PHONE) $=0.05$
KING	QUEEN	8.58	S(KING, QUEEN $)=0.8$
KING	CABBAGE	0.23	$\mathrm{S}(\mathrm{KING}, \mathrm{CABBAGE})=0.2$
	Spearman correlation coefficient 0: no correlation 1: perfect cłrrelation		

s(cup, coffee) = similarity between 'cup' and 'coffee'

SIMILARITY METRIC

s(rock, stone)

Pairwise Maximum Cosine Similarity
$\max _{i, j}\left\langle\vec{\mu}_{\text {rock }, i}, \vec{\mu}_{\text {stone }, j}\right\rangle$

SPEARMAN CORRELATIONS

WORD SIM DATASETS	FASTTEXT	W2GM	PFT-GM
SL-999	38.03	39.62	39.60
WS-353	78.88	79.38	76.11
MEN-3K	76.37	78.76	79.65
MC-30	81.20	84.58	80.93
RG-65	79.98	80.95	79.81
YP-130	53.33	47.12	54.93
MT-287	67.93	69.65	69.44
MT-771	66.89	70.36	69.68
RW-2K (RAREWORD)	48.09	42.73	49.36
AVG.	49.28	49.54	51.10

- PFT performs much better on RareWord dataset compared to w2gm, even slightly better than FastText
- Based on the average spearman correlation, PFT-GM performs the best.
- First multi-sense models that achieve high scores on RareWord

COMPARISON WITH OTHER MULTIPROTOTYPE EMBEDDINGS

Model	Dim	$\rho \times 100$
HUANG AVGSim	50	62.8
TIAN MAXSIm	50	63.6
W2GM MAXSIM	50	62.7
NEELAKANTAN AVGSIM	50	64.2
PFT-GM MAXSIM	50	63.7
ChEN-M AvGSim	200	66.2
W2GM MAXSIM	200	65.5
NEELAKANTAN AVGSIM	300	$\mathbf{6 7 . 2}$
W2GM MAXSIM	300	66.5
PFT-GM MAXSIM	300	$\mathbf{6 7 . 2}$

- PFT performs better than other multiprototype embeddings on SCWS, a benchmark for word similarity with multiple meanings.

Table 3: Spearman's Correlation $\rho \times 100$ on word similarity dataset SCWS.

FOREIGN LANGUAGE EMBEDDINGS

Word	Meaning	Nearest Neighbors
(IT) secondo	2nd	Secondo (2nd), terzo (3rd), quinto (5th), primo (first), quarto (4th), ultimo (last)
(IT) secondo	according to	conformit (compliance), attenendosi (following), cui (which), conformemente (accordance with)
(IT) porta	lead, bring	portano (lead), conduce (leads), portano, porter, portando (bring), costringe (forces)
(IT) porta	door	porte (doors), finestrella (window), finestra (window), portone (doorway), serratura (door lock)
(FR) voile	veil	voiles (veil), voiler (veil), voilent (veil), voilement, foulard (scarf), voils (veils), voilant (veiling)
(FR) voile	sail	catamaran (catamaran), driveur (driver), nautiques (water), Voile (sail), driveurs (drivers)
(FR) temps	weather	brouillard (fog), orageuses (stormy), nuageux (cloudy)
(FR) temps	time	mi-temps (half-time), partiel (partial), Temps (time), annualis (annualized), horaires (schedule)
(FR) voler	steal	envoler (fly), voleuse (thief), cambrioler (burgle), voleur (thief), violer (violate), picoler (tipple)
(FR) voler	fly	airs (air), vol (flight), volent (fly), envoler (flying), atterrir (land)

Table 5: Nearest neighbors of polysemies based on our foreign language PFT-GM models.

Lang.	Evaluation	FASTTEXT	w2g	w2gm	pft-g	pft-gm
FR	WS353	38.2	16.73	20.09	41.0	$\mathbf{4 1 . 3}$
DE	GUR350	70	65.01	69.26	77.6	$\mathbf{7 8 . 2}$
	GUR65	81	74.94	76.89	81.8	$\mathbf{8 5 . 2}$
IT	WS353	57.1	56.02	61.09	60.2	$\mathbf{6 2 . 5}$
	SL-999	29.3	29.44	$\mathbf{3 4 . 9 1}$	29.3	33.7

Table 4: Word similarity evaluation on foreign languages.

FUTURE WORK: MULTI-LINGUAL EMBEDDINGS

Literature: align embeddings of many languages after training (Conneau, 2018)

Use disentangled embeddings to disambiguate alignment

CONCLUSION

- Elegant representation of semantics using multimodal distributions
- Suitable modeling words with multiple meanings
- Model words as character levels
- Better semantics for rare words
- Able to estimate semantics of unseen words

