A Proofs

In this section, we prove Prop. 1. We start by stating and proving a lemma. Then, by rewriting Eq. 8 , with $\mathcal{R}=\mathcal{R}_{\ell_{2}}$, in such a way that the stated lemma is applicable, we prove item 3 of Prop. 1 . We then proceed to show that items 2 and 1 of Prop. 1 also hold. Finally, we prove that the analogous of Prop. 1 does not hold, when replacing the Euclidean norm by the ℓ_{1} matrix norm.

A. 1 Euclidean Norm

We start by proving the following lemma, which will be used to prove Prop. 1
Lemma 3. Assume $K \geq L$. Let matrices $\boldsymbol{M} \in$ $\mathbb{R}^{V_{\mathrm{s}} \times V_{\mathrm{S}}}$ (invertible), $\boldsymbol{V} \in \mathbb{R}^{K \times L}$ (with full column rank) and $\boldsymbol{W} \in \mathbb{R}^{V_{S} \times L}$ be arbitrary. Then, the matrix

$$
\begin{equation*}
\boldsymbol{P}^{*}=\arg \min _{\boldsymbol{P}: \boldsymbol{P} \boldsymbol{V}=\boldsymbol{W}} \frac{1}{2}\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\mathrm{F}}^{2} \tag{11}
\end{equation*}
$$

has rank at most L. Moreover, $\boldsymbol{P}^{*}=$ $\boldsymbol{W} \boldsymbol{V}^{\top}\left(\boldsymbol{V} \boldsymbol{V}^{\top}\right)^{-1}$, regardless of \boldsymbol{M}.

Proof. Let \otimes denote the Kronecker product and $\operatorname{vec}($.$) the function that stacks together the$ columns of a matrix into a column vector. We use the well-known property (Petersen and Pedersen 2012): for any matrices $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{X}$ such that $\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}$ is a valid product, the following holds:

$$
\begin{equation*}
\left(\boldsymbol{B}^{\top} \otimes \boldsymbol{A}\right) \operatorname{vec}(\boldsymbol{X})=\operatorname{vec}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}) \tag{12}
\end{equation*}
$$

Then, we have the following:

$$
\begin{align*}
\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\mathrm{F}} & =\left\|\boldsymbol{P}^{\top} \boldsymbol{M}\right\|_{\mathrm{F}}=\left\|\operatorname{vec}\left(\boldsymbol{P}^{\top} \boldsymbol{M}\right)\right\| \\
& =\left\|\left(\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_{K}\right) \operatorname{vec}\left(\boldsymbol{P}^{\top}\right)\right\| . \tag{13}
\end{align*}
$$

Furthermore, if we let $\boldsymbol{p}:=\operatorname{vec}\left(\boldsymbol{P}^{\top}\right)$ and $\boldsymbol{w}:=$ $\operatorname{vec}\left(\boldsymbol{W}^{\top}\right)$, by the same reasoning, the following also holds:

$$
\begin{align*}
& \operatorname{vec}\left(\boldsymbol{V}^{\top} \boldsymbol{P}^{\top}\right) \\
\Leftrightarrow & \operatorname{vec}\left(\boldsymbol{W}^{\top}\right) \tag{14}\\
\Leftrightarrow\left(\boldsymbol{I}_{V_{\mathrm{S}}} \otimes \boldsymbol{V}^{\top}\right) \boldsymbol{p} & =\boldsymbol{w} .
\end{align*}
$$

Let $\boldsymbol{H}=\left(\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_{K}\right)^{\top}\left(\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_{K}\right)=(\boldsymbol{M} \otimes$ $\left.\boldsymbol{I}_{K}\right)\left(\boldsymbol{M}^{\top} \otimes \boldsymbol{I}_{K}\right)=\boldsymbol{M} \boldsymbol{M}^{\top} \otimes \boldsymbol{I}_{K}$ and $\boldsymbol{G}=$ $\boldsymbol{I}_{V_{S}} \otimes \boldsymbol{V}^{\top}$. Given the above properties, we can then pose the following optimization problem, which is equivalent to the minimization in Eq. 11 .

$$
\begin{array}{cl}
\min _{\boldsymbol{p}} & \frac{1}{2} \boldsymbol{p}^{\top} \boldsymbol{H} \boldsymbol{p} \tag{15}\\
\text { s.t. } & \boldsymbol{G} \boldsymbol{p}=\boldsymbol{w}
\end{array}
$$

This problem is equivalent to the following linear system (given by the Lagrangian conditions)

$$
\left(\begin{array}{cc}
\boldsymbol{H} & \boldsymbol{G}^{\top} \tag{16}\\
\boldsymbol{G} & \mathbf{0}
\end{array}\right)\binom{\boldsymbol{p}}{\boldsymbol{\lambda}}=\binom{\mathbf{0}}{\boldsymbol{w}},
$$

where λ is a vector of Lagrange multipliers. The solution to this system is

$$
\binom{\boldsymbol{p}^{*}}{\boldsymbol{\lambda}^{*}}=\left(\begin{array}{cc}
\boldsymbol{H} & \boldsymbol{G}^{\top} \tag{17}\\
\boldsymbol{G} & \mathbf{0}
\end{array}\right)^{-1}\binom{\mathbf{0}}{\boldsymbol{w}}
$$

which gives

$$
\begin{align*}
\boldsymbol{p}^{*} & =\boldsymbol{H}^{-1} \boldsymbol{G}^{\top}\left(\boldsymbol{G} \boldsymbol{H}^{-1} \boldsymbol{G}^{\top}\right)^{-1} \boldsymbol{w} \\
& =\left[\boldsymbol{I}_{V_{\mathrm{S}}} \otimes\left(\boldsymbol{V}\left(\boldsymbol{V}^{\top} \boldsymbol{V}\right)^{-1}\right)\right] \boldsymbol{w} \tag{18}
\end{align*}
$$

where the second line comes from expanding G and \boldsymbol{H} and canceling several terms. Let $\boldsymbol{V}^{+}=$ $\left(\boldsymbol{V}^{\top} \boldsymbol{V}\right)^{-1} \boldsymbol{V}^{\top}$ be the pseudo-inverse of \boldsymbol{V}. Again from the property of the Kronecker product in Eq. 12 , we have that

$$
\begin{equation*}
\boldsymbol{P}^{*}=\left(\boldsymbol{V}\left(\boldsymbol{V}^{\top} \boldsymbol{V}\right)^{-1} \boldsymbol{W}^{\top}\right)^{\top}=\boldsymbol{W} \boldsymbol{V}^{+} \tag{19}
\end{equation*}
$$

Note that this shows that the optimal \boldsymbol{P}^{*} does not depend on \boldsymbol{M}. Since $\operatorname{rank}\left(\boldsymbol{V}^{+}\right) \leq L$, we have that $\operatorname{rank}(\boldsymbol{P}) \leq L$. Note that, in order to conclude this, we have not assumed anything about \boldsymbol{M} or \boldsymbol{V}, other than that they are full row and column rank matrices, respectively.

We now prove Prop. 1. Let S be the matrix whose columns are $\boldsymbol{s}^{(1)}, \ldots, \boldsymbol{s}^{(N)}$. If we keep \boldsymbol{P} fixed and optimize only with respect to \boldsymbol{Q}, we obtain

$$
\begin{equation*}
\boldsymbol{Q}^{*}=\arg \min _{\boldsymbol{Q}} \frac{\mu}{2}\left\|\boldsymbol{S}^{\top} \boldsymbol{P}-\boldsymbol{T}^{\top} \boldsymbol{Q}\right\|_{\mathrm{F}}^{2}+\frac{\mu_{\mathrm{T}}}{2}\|\boldsymbol{Q}\|_{\mathrm{F}}^{2} \tag{20}
\end{equation*}
$$

Setting the gradient to zero, and noting that T has full row rank, we obtain the following closed-form solution for \boldsymbol{Q}^{*} :

$$
\begin{equation*}
\boldsymbol{Q}^{*}=\left(\boldsymbol{T} \boldsymbol{T}^{\top}+\frac{\mu_{\mathrm{T}}}{\mu} \boldsymbol{I}_{V_{\mathrm{T}}}\right)^{-1} \boldsymbol{T} \boldsymbol{S}^{\top} \boldsymbol{P} \tag{21}
\end{equation*}
$$

The equation above can be written in the form $\boldsymbol{Q}^{*}=\boldsymbol{R} \boldsymbol{P}$, where $\boldsymbol{R} \in \mathbb{R}^{V_{\mathrm{T}} \times V_{\mathrm{S}}}$ (i.e., \boldsymbol{Q}^{*} depends linearly on $\boldsymbol{P})$. Therefore, we can write the objective function in Eq. 8 (with $\mathcal{R}=\mathcal{R}_{\ell_{2}}$) as

$$
\begin{align*}
\mathcal{F}\left(\boldsymbol{P}, \boldsymbol{Q}^{*}\right)= & \frac{\mu}{2}\left\|\left(\boldsymbol{S}^{\top}-\boldsymbol{T}^{\top} \boldsymbol{R}\right) \boldsymbol{P}\right\|_{\mathrm{F}}^{2}+\frac{\mu_{\mathrm{S}}}{2}\|\boldsymbol{P}\|_{\mathrm{F}}^{2} \\
& +\frac{\mu_{\mathrm{T}}}{2}\|\boldsymbol{R} \boldsymbol{P}\|_{\mathrm{F}}^{2}+\mathcal{L}(\boldsymbol{P} \boldsymbol{V}) \tag{22}
\end{align*}
$$

Note that the first three terms of Eq. 22 are all squared Frobenius norms of linear transformations of \boldsymbol{P}, hence we can collapse them all into a single term $\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\mathrm{F}}^{2}$ for some matrix $\boldsymbol{M} \in \mathbb{R}^{V_{s} \times V_{\mathrm{V}}}$. Finally, we rewrite our objective function as

$$
\begin{align*}
& \min _{\boldsymbol{P}}\left(\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\mathrm{F}}^{2}+\mathcal{L}(\boldsymbol{P} \boldsymbol{V})\right) \\
= & \min _{\boldsymbol{W}}\left[\left(\min _{\boldsymbol{P}: \boldsymbol{P} \boldsymbol{V}=\boldsymbol{W}}\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\mathrm{F}}^{2}\right)+\mathcal{L}(\boldsymbol{W})\right] . \tag{23}
\end{align*}
$$

Invoking Lemma 3 and the fact that \boldsymbol{Q}^{*} is a linear transformation of \boldsymbol{P}^{*}, we have item 3 of Prop. 1 . To prove item 2, we start by replacing Eq. 19 in Eq. 233, obtaining

$$
\begin{equation*}
\min _{\boldsymbol{W}}\left\|\boldsymbol{M}^{\top} \boldsymbol{W} \boldsymbol{V}^{+}\right\|_{\mathrm{F}}^{2}+\mathcal{L}(\boldsymbol{W}) . \tag{24}
\end{equation*}
$$

We can simplify the quadratic term

$$
\begin{align*}
\left\|\boldsymbol{M}^{\top} \boldsymbol{W} \boldsymbol{V}^{+}\right\|_{\mathrm{F}}^{2} & =\left\|\left(\boldsymbol{M}^{\top} \otimes\left(\boldsymbol{V}^{+}\right)^{\top}\right) \boldsymbol{w}\right\|^{2} \\
& =\boldsymbol{w}^{\top}\left(\boldsymbol{M} \boldsymbol{M}^{\top} \otimes \boldsymbol{V}^{+}\left(\boldsymbol{V}^{+}\right)^{\top}\right) \boldsymbol{w} \\
& =\boldsymbol{w}^{\top}\left(\boldsymbol{M} \boldsymbol{M}^{\top} \otimes\left(\boldsymbol{V}^{\top} \boldsymbol{V}\right)^{-1}\right) \boldsymbol{w} . \tag{25}
\end{align*}
$$

We can see from Eq. 25 that the classifier obtained by optimizing Eq. 24 depends on \boldsymbol{V} only through the matrix product $\boldsymbol{V}^{\top} \boldsymbol{V}$, as stated in item 2 of Prop. 1 .
We still need to show item 1 of Prop. 1 For any $\boldsymbol{V} \in \mathbb{R}^{K \times L}$ (that is full column rank), let $\boldsymbol{V}^{\prime} \in \mathbb{R}^{K^{\prime} \times L}$ be such that $K^{\prime}=L$ and $\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{V}^{\prime \top} \boldsymbol{V}^{\prime}$, and let $\boldsymbol{W}^{*}=\boldsymbol{P} \boldsymbol{V}$ be the minimizer of Eq. 24 and $\boldsymbol{W}^{* *}=\boldsymbol{P}^{\prime} \boldsymbol{V}^{\prime}$ the minimizer of the same expression, when using \boldsymbol{V}^{\prime} instead of \boldsymbol{V}. Since $\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{V}^{\boldsymbol{\top}} \boldsymbol{V}^{\prime}$, we have that $\boldsymbol{W}^{*}=\boldsymbol{W}^{\prime *}$. Then, by our definitions of \boldsymbol{W} and \boldsymbol{W}^{\prime}, we get

$$
\begin{equation*}
P V=P^{\prime} V^{\prime} \tag{26}
\end{equation*}
$$

Hence, the classifier for the source language is the same when using \boldsymbol{V} or \boldsymbol{V}^{\prime}. A similar reasoning can be used to prove that $\boldsymbol{Q} \boldsymbol{V}=\boldsymbol{Q}^{\prime} \boldsymbol{V}^{\prime}$, and conclude that the classifier for the target language is also the same. This proves item 1 in Prop. 1, finishing our proof.

A. 2 Generalization to Mahalanobis Norms

We define the Mahalanobis-Frobenius norm of a matrix $\boldsymbol{X} \in \mathbb{R}^{I \times J}$ induced by a positive definite matrix $\boldsymbol{R} \in \mathbb{R}^{I \times I}$ as $\|\boldsymbol{X}\|_{\boldsymbol{R}}:=\sqrt{\sum_{j=1}^{J} \boldsymbol{x}_{j}^{\top} \boldsymbol{R} \boldsymbol{x}_{j}}$, where \boldsymbol{x}_{j} denotes the j th column of \boldsymbol{X}.

Lemma 4. Under the same assumptions as in Lemma 3 for any Mahalanobis-Frobenius norm induced by a positive definite matrix $\boldsymbol{R} \in \mathbb{R}^{V_{s} \times V_{s}}$, the matrix

$$
\begin{equation*}
\boldsymbol{P}^{*}=\arg \min _{\boldsymbol{P}: P \boldsymbol{P}=\boldsymbol{W}} \frac{1}{2}\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\boldsymbol{R}}^{2} \tag{27}
\end{equation*}
$$

has rank at most L.
Proof. Since \boldsymbol{R} is positive definite, it has a decomposition $\boldsymbol{R}=\boldsymbol{N}^{\top} \boldsymbol{N}$, where $\boldsymbol{N} \in \mathbb{R}^{V_{s} \times V_{\mathrm{s}}}$ is invertible. From the definition of MahalanobisFrobenius norm, we have that $\left\|M^{\top} P\right\|_{\boldsymbol{R}}=$ $\left\|\boldsymbol{N} \boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\mathrm{F}}$. Since \boldsymbol{N} and \boldsymbol{M} are both invertible, so is $M^{\prime}:=M N^{\top}$. Hence we can take Lemma 3 with \boldsymbol{M}^{\prime} in place of \boldsymbol{M}.

A. 3 Other Norms

We now prove Prop. 2. We will start by showing a counter-example to the analogous of Lemma 3 , when using $\mathcal{R}=\mathcal{R}_{\ell_{1}}$. We choose $V_{\mathrm{s}}=N=$ $K=3, L=2, \boldsymbol{P}^{*}=\boldsymbol{M}=\boldsymbol{I}_{3}$ and

$$
\boldsymbol{V}=\boldsymbol{W}=\left(\begin{array}{cc}
-2 & 2 \tag{28}\\
2 & 2 \\
1 & 4
\end{array}\right)
$$

These choices verify

$$
\begin{equation*}
\boldsymbol{P}^{*}=\arg \min _{\boldsymbol{P}: \boldsymbol{P} \boldsymbol{V}=\boldsymbol{W}}\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{1}, \tag{29}
\end{equation*}
$$

and $\operatorname{rank}\left(\boldsymbol{P}^{*}\right)=3>L$, which are the conditions we needed to accomplish.

Since Lemma 3 is equivalent to item 3 in Prop. 1, this proves that the analogous to item 3 in Prop. 11, when replacing $\mathcal{R}_{\ell_{2}}$ by $\mathcal{R}_{\ell_{1}}$, does not hold. The same counter-example can be used to prove that the analogous to both items 1 and 2 in Prop. 1] with $\mathcal{R}=\mathcal{R}_{\ell_{1}}$, do not hold.
ℓ_{0}-norm. The same exact counter-example above can also be used for the ℓ_{0} matrix "norm," defined as the number of non-zero entries in the matrix-the solution \boldsymbol{P}^{*} is the same as in the ℓ_{1}-norm case.
ℓ_{∞}-norm. For the ℓ_{∞} matrix norm, defined as the maximum absolute value in the matrix, a very similar counter-example can be found. The only difference in this case is that the solution to

$$
\begin{equation*}
\boldsymbol{P}^{*}=\arg \min _{\boldsymbol{P}: \boldsymbol{P V}=\boldsymbol{W}}\left\|\boldsymbol{M}^{\top} \boldsymbol{P}\right\|_{\infty}, \tag{30}
\end{equation*}
$$

is

$$
\boldsymbol{P}^{*}=\left(\begin{array}{ccc}
\frac{5}{8} & -\frac{5}{8} & \frac{1}{2} \tag{31}\\
-\frac{9}{40} & \frac{5}{8} & \frac{3}{10} \\
\frac{3}{8} & \frac{5}{8} & \frac{1}{2}
\end{array}\right)
$$

which also has rank 3.
These counter-examples have been verified with the software Mathematica, using symbolic minimization functions.

