
A Proofs

In this section, we prove Prop. 1. We start by
stating and proving a lemma. Then, by rewriting
Eq. 8, withR = R`2 , in such a way that the stated
lemma is applicable, we prove item 3 of Prop. 1.
We then proceed to show that items 2 and 1 of
Prop. 1 also hold. Finally, we prove that the analo-
gous of Prop. 1 does not hold, when replacing the
Euclidean norm by the `1 matrix norm.

A.1 Euclidean Norm
We start by proving the following lemma, which
will be used to prove Prop. 1.

Lemma 3. Assume K ≥ L. Let matrices M ∈
RVS×VS (invertible), V ∈ RK×L (with full column
rank) and W ∈ RVS×L be arbitrary. Then, the
matrix

P ∗ = arg min
P :PV =W

1

2
‖M>P ‖2F, (11)

has rank at most L. Moreover, P ∗ =
WV >(V V >)−1, regardless ofM .

Proof. Let ⊗ denote the Kronecker product and
vec(.) the function that stacks together the
columns of a matrix into a column vector. We use
the well-known property (Petersen and Pedersen,
2012): for any matricesA,B,X such thatAXB
is a valid product, the following holds:

(B> ⊗A) vec(X) = vec(AXB). (12)

Then, we have the following:

‖M>P ‖F = ‖P>M‖F = ‖ vec(P>M)‖
= ‖(M> ⊗ IK) vec(P>)‖.

(13)
Furthermore, if we let p := vec(P>) and w :=
vec(W>), by the same reasoning, the following
also holds:

vec(V >P>) = vec(W>)

⇔ (IVS ⊗ V
>)p = w.

(14)

Let H = (M> ⊗ IK)>(M> ⊗ IK) = (M ⊗
IK)(M> ⊗ IK) = MM> ⊗ IK and G =
IVS⊗V >. Given the above properties, we can then
pose the following optimization problem, which is
equivalent to the minimization in Eq. 11:

min
p

1

2
p>Hp

s.t. Gp = w.

(15)

This problem is equivalent to the following linear
system (given by the Lagrangian conditions)(

H G>

G 0

)(
p
λ

)
=

(
0
w

)
, (16)

where λ is a vector of Lagrange multipliers. The
solution to this system is(

p∗

λ∗

)
=

(
H G>

G 0

)−1(
0
w

)
, (17)

which gives

p∗ = H−1G>(GH−1G>)−1w

= [IVS ⊗ (V (V >V )−1)]w,
(18)

where the second line comes from expanding G
and H and canceling several terms. Let V + =
(V >V )−1V > be the pseudo-inverse of V . Again
from the property of the Kronecker product in
Eq. 12, we have that

P ∗ = (V (V >V )−1W>)> = WV +. (19)

Note that this shows that the optimal P ∗ does not
depend on M . Since rank(V +) ≤ L, we have
that rank(P ) ≤ L. Note that, in order to conclude
this, we have not assumed anything about M or
V , other than that they are full row and column
rank matrices, respectively.

We now prove Prop. 1. Let S be the matrix
whose columns are s(1), . . . , s(N). If we keep P
fixed and optimize only with respect to Q, we ob-
tain

Q∗ = arg min
Q

µ

2
‖S>P − T>Q‖2F +

µT

2
‖Q‖2F.

(20)
Setting the gradient to zero, and noting that T has
full row rank, we obtain the following closed-form
solution forQ∗:

Q∗ =

(
TT> +

µT

µ
IVT

)−1
TS>P . (21)

The equation above can be written in the form
Q∗ = RP , where R ∈ RVT×VS (i.e., Q∗ depends
linearly on P ). Therefore, we can write the objec-
tive function in Eq. 8 (withR = R`2) as

F(P ,Q∗) =
µ

2
‖(S> − T>R)P ‖2F +

µS

2
‖P ‖2F

+
µT

2
‖RP ‖2F + L(PV ).

(22)



Note that the first three terms of Eq. 22 are all
squared Frobenius norms of linear transformations
of P , hence we can collapse them all into a single
term ‖M>P ‖2F for some matrix M ∈ RVS×VS .
Finally, we rewrite our objective function as

min
P

(
‖M>P ‖2F + L(PV )

)
= min

W

[(
min

P :PV =W
‖M>P ‖2F

)
+ L(W )

]
.

(23)
Invoking Lemma 3 and the fact that Q∗ is a linear
transformation of P ∗, we have item 3 of Prop. 1.
To prove item 2, we start by replacing Eq. 19 in
Eq. 23, obtaining

min
W
‖M>WV +‖2F + L(W ). (24)

We can simplify the quadratic term

‖M>WV +‖2F = ‖(M> ⊗ (V +)>)w‖2

= w>(MM> ⊗ V +(V +)>)w

= w>(MM> ⊗ (V >V )−1)w.
(25)

We can see from Eq. 25 that the classifier obtained
by optimizing Eq. 24 depends on V only through
the matrix product V >V , as stated in item 2 of
Prop. 1.

We still need to show item 1 of Prop. 1.
For any V ∈ RK×L (that is full col-
umn rank), let V ′ ∈ RK′×L be such that
K ′ = L andV >V = V ′>V ′, and letW ∗ = PV
be the minimizer of Eq. 24 and W ′∗ = P ′V ′ the
minimizer of the same expression, when using V ′

instead of V . Since V >V = V ′>V ′, we have
that W ∗ = W ′∗. Then, by our definitions of W
andW ′, we get

PV = P ′V ′. (26)

Hence, the classifier for the source language is the
same when using V or V ′. A similar reasoning
can be used to prove that QV = Q′V ′, and con-
clude that the classifier for the target language is
also the same. This proves item 1 in Prop. 1, fin-
ishing our proof.

A.2 Generalization to Mahalanobis Norms

We define the Mahalanobis-Frobenius norm of a
matrix X ∈ RI×J induced by a positive definite

matrix R ∈ RI×I as ‖X‖R :=
√∑J

j=1 x
>
j Rxj ,

where xj denotes the jth column ofX .

Lemma 4. Under the same assumptions as in
Lemma 3, for any Mahalanobis-Frobenius norm
induced by a positive definite matrixR ∈ RVS×VS ,
the matrix

P ∗ = arg min
P :PV =W

1

2
‖M>P ‖2R, (27)

has rank at most L.

Proof. Since R is positive definite, it has a de-
composition R = N>N , where N ∈ RVS×VS

is invertible. From the definition of Mahalanobis-
Frobenius norm, we have that ‖M>P ‖R =
‖NM>P ‖F. Since N and M are both invert-
ible, so is M ′ := MN>. Hence we can take
Lemma 3 withM ′ in place ofM .

A.3 Other Norms

We now prove Prop. 2. We will start by showing
a counter-example to the analogous of Lemma 3,
when using R = R`1 . We choose VS = N =
K = 3, L = 2,P ∗ = M = I3 and

V = W =

−2 2
2 2
1 4

 . (28)

These choices verify

P ∗ = arg min
P :PV =W

‖M>P ‖1, (29)

and rank(P ∗) = 3 > L, which are the conditions
we needed to accomplish.

Since Lemma 3 is equivalent to item 3 in
Prop. 1, this proves that the analogous to item 3
in Prop. 1, when replacing R`2 by R`1 , does not
hold. The same counter-example can be used to
prove that the analogous to both items 1 and 2 in
Prop. 1, withR = R`1 , do not hold.

`0-norm. The same exact counter-example
above can also be used for the `0 matrix “norm,”
defined as the number of non-zero entries in the
matrix—the solution P ∗ is the same as in the
`1-norm case.

`∞-norm. For the `∞ matrix norm, defined as
the maximum absolute value in the matrix, a very
similar counter-example can be found. The only
difference in this case is that the solution to

P ∗ = arg min
P :PV =W

‖M>P ‖∞, (30)



is

P ∗ =

 5
8 −5

8
1
2

− 9
40

5
8

3
10

3
8

5
8

1
2

 , (31)

which also has rank 3.
These counter-examples have been verified with

the software Mathematica, using symbolic mini-
mization functions.


