Entity Hierarchy Embedding: Supplementary Material

1 Proof of Theorem 1

In this section we prove Theorem 1 (Section 2.2):
Theorem 1. $\forall h \in \mathcal{A}_{e} \cap \mathcal{A}_{e^{\prime}}, h \in \mathcal{Q}_{e, e^{\prime}}$ iff it satisfies the two conditions: (1) $\left|\mathcal{C}_{h} \cap\left(\mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}\right)\right| \geq 2$; (2) $\exists a, b \in \mathcal{C}_{h} \cap\left(\mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}\right)$ s.t. $t_{a} \neq t_{b}$.

Recall that $\mathcal{Q}_{e, e^{\prime}}$ is the set of common ancestors of entity e and e^{\prime} that are turning nodes of any $e \rightarrow e^{\prime}$ paths; \mathcal{A}_{e} is the ancestor nodes of entity e (including e itself); for a node $h \in \mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}$, its critical node t_{h} is the nearest (w.r.t the length of the shortest path) descendant of h (including h itself) that is in $\mathcal{Q}_{e, e^{\prime}} \cup\left\{e, e^{\prime}\right\}$; \mathcal{C}_{h} be the set of immediate child nodes of h.

Lemma 2. $\forall h \in \mathcal{A}_{e} \cap \mathcal{A}_{e^{\prime}}, t_{h} \in \mathcal{Q}_{e, e^{\prime}}$.
Proof. $h \in \mathcal{A}_{e} \cap \mathcal{A}_{e^{\prime}} \Rightarrow\left(h \in \mathcal{A}_{e}\right) \wedge\left(h \in \mathcal{A}_{e^{\prime}}\right)$.
As $h \in \mathcal{A}_{e}$, there's path $e \rightarrow \cdots \rightarrow h$ where the consecutive nodes are (child, parent) pairs. Similarly, there exists path $h \rightarrow \cdots \rightarrow e^{\prime}$ where the consecutive nodes are (parent, child) pairs. Denote the set of intersections of the two paths as \mathcal{I}. Because the two paths intersects at $h, \mathcal{I} \neq \phi$.

Note that the nodes in the intersection set are also in the path $h \rightarrow \cdots \rightarrow e^{\prime}$, so we can sort the nodes in \mathcal{I} according to the topological order in path $h \rightarrow \cdots \rightarrow e^{\prime}$. Denote the topologically lowest node in \mathcal{I} as t. As t is in the intersection set of two paths, there exists path $e \rightarrow \cdots \rightarrow t$ where the consecutive nodes are (child, parent) pairs and path $t \rightarrow \cdots \rightarrow e^{\prime}$ where the consecutive nodes are (parent, child) pairs. If the two paths $e \rightarrow \cdots \rightarrow t$ and $t \rightarrow \cdots \rightarrow e^{\prime}$ have any intersections except for t, then the intersection will be topologically lower than t, which contradicts the definition of t. So paths $e \rightarrow \cdots \rightarrow t$ and $t \rightarrow \cdots \rightarrow e^{\prime}$ have intersection only at t, so t is a turning node. So $Q_{e, e^{\prime}} \neq \phi$. According to the construction of t, t is a descendant of h, therefore $t_{h} \in Q_{e, e^{\prime}}$.

We next prove Theorem 1.

Figure 1: Illustration for Lemma 2. The topologically lowest intersection node is a turning node, which is also a descendant of h.

Proof. Sufficiency: Note that $e, e^{\prime} \notin Q_{e, e^{\prime}}$, we prove by enumerating possible situations: (i) $t_{a}=e, t_{b}=e^{\prime}$, (ii) $t_{a}=e, t_{b} \in Q_{e, e^{\prime}}$, (iii) $t_{a}, t_{b} \in Q_{e, e^{\prime}}$. Case $t_{a}=e, t_{b}=e^{\prime}$ is equivalent to case (i) if we swap e and e^{\prime}, and the cases $t_{a}=$ $e^{\prime}, t_{b} \in Q_{e, e^{\prime}}, t_{a} \in Q_{e, e^{\prime}}, t_{b}=e\left(e^{\prime}\right)$ are equivalent to case (ii) if we swap the notations for variables a, b, e, e^{\prime} properly. So the proof for cases (i), (ii) and (iii) is sufficient. An illustration of the cases is provided in Figure 2.

Figure 2: Three cases: (i) $t_{a}=e, t_{b}=e^{\prime}$; (ii) $t_{a}=e, t_{b} \in Q_{e, e^{\prime}}$; (iii) $t_{a}, t_{b} \in Q_{e, e^{\prime}}$.
(i) $t_{a}=e, t_{b}=e^{\prime}$:

As $t_{a}=e$, there's a path $e \rightarrow \cdots \rightarrow a \rightarrow h$ where the consecutive nodes are (child, parent) pairs. Similarly, there's a path $h \rightarrow b \rightarrow \cdots \rightarrow e^{\prime}$ where the consecutive nodes are (parent, child) pairs. The above two paths only intersect at h, otherwise as a is the topologically highest node in path $e \rightarrow$ $\cdots \rightarrow a \rightarrow h$ except for h, and e^{\prime} is the topologically lowest node in path $h \rightarrow b \rightarrow \cdots \rightarrow e^{\prime}, e^{\prime}$ would be a descendant of a. According to Lemma 2, $t_{a} \in Q_{e, e^{\prime}}$, which contradicts $t_{a}=e$. So the two paths only intersect at h, and we can combine the two paths to construct a valid path $e \rightarrow \cdots \rightarrow a \rightarrow$ $h \rightarrow b \rightarrow \cdots \rightarrow e^{\prime}$, yielding h as a turning node.
(ii) $t_{a}=e, t_{b} \in Q_{e, e^{\prime}}$:
$t_{a}=e \Rightarrow \exists e \rightarrow \cdots \rightarrow a \rightarrow h$ where the consecutive nodes are (child, parent) pairs. As $t_{b} \in Q_{e, e^{\prime}}$, there exists path $h \rightarrow b \rightarrow \cdots \rightarrow t_{b} \rightarrow$ $\cdots \rightarrow e^{\prime}$ where the consecutive nodes are (parent, child) pairs. If the two paths $e \rightarrow \cdots \rightarrow a \rightarrow h$ and $h \rightarrow b \rightarrow \cdots \rightarrow t_{b} \rightarrow \cdots \rightarrow e^{\prime}$ has any intersections except for h, then e^{\prime} will be a descendant of a, thus $a \in \mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}$. According to Lemma 2, $t_{a} \in \mathcal{Q}_{e, e^{\prime}}$, which contradicts the assumption that $t_{a}=e \notin \mathcal{Q}_{e, e^{\prime}}$. So path $e \rightarrow \cdots \rightarrow a \rightarrow h \rightarrow b \rightarrow \cdots \rightarrow t_{b} \rightarrow \cdots \rightarrow e^{\prime}$ is a valid path, yielding h as a turning node.
(iii) $t_{a}, t_{b} \in Q_{e, e^{\prime}}$:

First of all, we prove that there exists path $e\left(e^{\prime}\right) \rightarrow \cdots \rightarrow t_{a}$ where the consecutive nodes are (child, parent) pairs and path $t_{b} \rightarrow \cdots \rightarrow e^{\prime}(e)$ where the consecutive nodes are (parent, child) pairs and the two paths do not intersect with each other. If $t_{b} \rightarrow \cdots \rightarrow e^{\prime}$ does not intersect with $e \rightarrow \cdots \rightarrow t_{a}$ (the existence of the paths is due to the definition of turning node), we've already got the construction. Otherwise, if $t_{b} \rightarrow \cdots \rightarrow e^{\prime}$ intersects with $t_{a} \rightarrow \cdots \rightarrow e^{\prime}$ at x before it intersects with $e \rightarrow \cdots \rightarrow t_{a}$, the path $e \rightarrow \cdots \rightarrow t_{a}$ and path $t_{b} \rightarrow \cdots \rightarrow x \rightarrow \cdots \rightarrow e^{\prime}$ where the part $x \rightarrow \cdots \rightarrow e^{\prime}$ is subpath of $t_{a} \rightarrow \cdots \rightarrow e^{\prime}$ satisfies the above requirements. Similarly, if $t_{b} \rightarrow \cdots \rightarrow e^{\prime}$ intersects with $e \rightarrow \cdots \rightarrow t_{a}$ at x before it intersects with $t_{a} \rightarrow \cdots \rightarrow e^{\prime}$, the path $e^{\prime} \rightarrow \cdots \rightarrow t_{a}$ and path $t_{b} \rightarrow \cdots \rightarrow x \rightarrow \cdots \rightarrow e$ where the part $x \rightarrow \cdots \rightarrow e$ is subpath of $t_{a} \rightarrow \cdots \rightarrow e$ satisfies the above requirements.
Using the above conclusion, if path $t_{a} \rightarrow \cdots \rightarrow a \rightarrow h$ (we choose the shortest path in the part $t_{a} \rightarrow \cdots \rightarrow a$ if there are multiple paths) intersects with $h \rightarrow b \rightarrow \cdots \rightarrow t_{b}$ (similarly, we choose the shortest path in the part $b \rightarrow \cdots \rightarrow t_{b}$) at any node except for h, we denote the topologically lowest one (w.r.t. path $h \rightarrow b \rightarrow \cdots \rightarrow t_{b}$) as x, then $t_{a} \rightarrow \cdots \rightarrow x$ has no intersection with $x \rightarrow \cdots \rightarrow t_{b}$ except for x, as any such intersection will be lower than x. So the path $e\left(e^{\prime}\right) \rightarrow \cdots \rightarrow t_{a} \rightarrow \cdots \rightarrow x \rightarrow \cdots \rightarrow t_{b} \rightarrow$ $\cdots \rightarrow e^{\prime}$ is a valid path, making x a turning node. As $t_{a} \neq t_{b}$, we have $\left(x \neq t_{a}\right) \vee\left(x \neq t_{b}\right)$. If $x \neq t_{a}, x$ is closer to a as we've chosen the shortest path in part $t_{a} \rightarrow \cdots \rightarrow a$, contradicting the definition of t_{a}. Similarly, it is also impossible that $x \neq t_{b}$. So the two paths $t_{a} \rightarrow \cdots \rightarrow a \rightarrow h$ and $h \rightarrow b \rightarrow \cdots \rightarrow t_{b}$ do not intersect with each other.

Putting the above conclusions together, we can construct a valid path $e\left(e^{\prime}\right) \rightarrow$ $\cdots \rightarrow t_{a} \rightarrow \cdots \rightarrow a \rightarrow h \rightarrow b \rightarrow \cdots \rightarrow t_{b} \rightarrow \cdots \rightarrow e^{\prime}$, making h a turning node. Note that we also need to prove that the path $e \rightarrow \cdots \rightarrow t_{a}$ does not
intersect with path $h \rightarrow b \rightarrow \cdots \rightarrow t_{b}$, which is analogous to the proof that path $t_{a} \rightarrow \cdots \rightarrow a \rightarrow h$ intersects with $h \rightarrow b \rightarrow \cdots \rightarrow t_{b}$ only at h.

Necessity: If h was a turning node, there would be a path $e \rightarrow \cdots a \rightarrow h \rightarrow$ $b \rightarrow \cdots \rightarrow e^{\prime}$, where the consecutive nodes before h are (child, parent) pairs and (parent, child) pairs after h, and we denote the two direct children of h in the path as a and b, in which a is ascendant of e (or e itself) and b ascendant of e^{\prime} (or e^{\prime} itself). So $\left|\mathcal{C}_{h} \cap\left(\mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}\right)\right| \geq|\{a, b\}|=2$.

Then we prove that $\exists a, b \in \mathcal{C}_{h} \cap\left(\mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}\right)$ s.t. $t_{a} \neq t_{b}$ by contradiction. Suppose that $\forall a, b \in \mathcal{C}_{h} \cap\left(\mathcal{A}_{e} \cup \mathcal{A}_{e^{\prime}}\right)$ we have $t_{a}=t_{b}$. Using the same notation as above, denote a, b as the direct children of h in the path $e \rightarrow \cdots a \rightarrow h \rightarrow$ $b \rightarrow \cdots \rightarrow e^{\prime}$ which makes h a turning node. W.l.o.g. we consider two cases: $t_{a}=t_{b}=e$, and $t_{a}=t_{b} \in Q_{e, e^{\prime}}$. For the first case, $t_{b}=e \Rightarrow e$ is a descendant of b, and from the definition of b we know that e^{\prime} is a descendant of b, so $b \in \mathcal{A}_{e, e^{\prime}}$. From Lemma 2, $t_{b} \in Q_{e, e^{\prime}}$, contradicts $t_{b}=e$.

For the second case $t_{a}=t_{b} \in Q_{e, e^{\prime}}$, denote $t_{a, b}=t_{a}=t_{b}$. As h is a turning node, there exists a path $e \rightarrow \cdots a \rightarrow h \rightarrow b \rightarrow \cdots \rightarrow e^{\prime}$. Then the subpaths $e \rightarrow \cdots \rightarrow a$ and $b \rightarrow \cdots \rightarrow e^{\prime}$ has no common nodes according to the definition of a path. So at least one of the subpaths does not include $t_{a, b}$, w.l.o.g assume subpath $b \rightarrow \cdots \rightarrow e^{\prime}$ does not include $t_{a, b}$. As $t_{a, b}$ is a descendant of b, there exists paths $b \rightarrow \cdots \rightarrow t_{a, b}$, and we pick up the shortest one. We'll prove that there's no intersection between path $b \rightarrow \cdots \rightarrow t_{a, b}$ and path $b \rightarrow \cdots \rightarrow e^{\prime}$: Assume that there exists such intersections, and denote the topologically lowest intersection (w.r.t. path $b \rightarrow \cdots \rightarrow t_{a, b}$) as x, then as we've assumed that subpath $b \rightarrow \cdots \rightarrow e^{\prime}$ does not include $t_{a, b}$, we have $x \neq t_{a, b}$. Then we can prove that x is a turning node: If subpath $x \rightarrow \cdots \rightarrow e^{\prime}$ does not intersect with path $e \rightarrow \cdots \rightarrow t_{a, b}$, then we can construct a path $e \rightarrow \cdots \rightarrow t_{a, b} \rightarrow x \rightarrow \cdots \rightarrow e^{\prime}$, yielding x as a turning node. Otherwise, if $x \rightarrow \cdots \rightarrow e^{\prime}$ intersects with $t_{a, b} \rightarrow \cdots \rightarrow e^{\prime}$ before it intersects with $e \rightarrow \cdots \rightarrow t_{a, b}$ or it does not intersect with $e \rightarrow \cdots \rightarrow t_{a, b}$ at all, then denote the intersection node as y, we have a valid path $e \rightarrow \cdots \rightarrow t_{a, b} \rightarrow x \rightarrow \cdots \rightarrow y \rightarrow$ $\cdots \rightarrow e^{\prime}$ in which the part $y \rightarrow \cdots \rightarrow e^{\prime}$ is a subpath of $t_{a, b} \rightarrow \cdots \rightarrow e^{\prime}$, yielding x as a turning node. By similar construction, we can prove that if if $x \rightarrow \cdots \rightarrow e^{\prime}$ intersects with $e \rightarrow \cdots \rightarrow t_{a, b}$ before it intersects with $t_{a, b} \rightarrow \cdots \rightarrow e^{\prime}$ or it does not intersect with $t_{a, b} \rightarrow \cdots \rightarrow e^{\prime}$ at all, x is also a turning node. However, x is nearer to b than $t_{a, b}$, which contradicts the definition of $t_{a, b}$. So we have proved that there's no intersection between path $b \rightarrow \cdots \rightarrow t_{a, b}$ and path $b \rightarrow \cdots \rightarrow e^{\prime}$. Then we can prove that $t_{a, b}=b$: If path $b \rightarrow \cdots \rightarrow e^{\prime}$ does not intersect with $e \rightarrow \cdots \rightarrow t_{a, b}$, then a valid path $e \rightarrow \cdots \rightarrow t_{a, b} \rightarrow \cdots \rightarrow b \rightarrow \cdots \rightarrow e^{\prime}$ will make b a turning node, so $t_{a, b}=b$. Otherwise, if $b \rightarrow \cdots \rightarrow e^{\prime}$ intersects with $t_{a, b} \rightarrow \cdots \rightarrow e^{\prime}$ at z before it intersects with $e \rightarrow \cdots \rightarrow t_{a, b}$, then a valid
path $e \rightarrow \cdots \rightarrow t_{a, b} \rightarrow \cdots \rightarrow b \rightarrow \cdots \rightarrow z \rightarrow \cdots \rightarrow e^{\prime}$ where the part $z \rightarrow \cdots \rightarrow e^{\prime}$ is subpath of $t_{a, b} \rightarrow e^{\prime}$ will make b a turning node. If $b \rightarrow \cdots \rightarrow e^{\prime}$ intersects with $e \rightarrow \cdots \rightarrow t_{a, b}$ at z before it intersects with $t_{a, b} \rightarrow \cdots \rightarrow e^{\prime}$, then through similar construction we can also prove $t_{a, b}=b$. This contradicts the assumption that subpath $b \rightarrow \cdots \rightarrow e^{\prime}$ does not include $t_{a, b}$, so the second case is also impossible.

