Structural Neural Encoders for AMR-to-text Generation

NAACL 2019

Marco Damonte, Shay Cohen
School of Informatics, University of Edinburgh, UK

Abstract Meaning Representation (AMR)

He ate the pizza with his fingers.

AMR-to-text generation (English)

AMR-to-text generation (English)

He ate the pizza with his fingers.

Previous work

- Konstas et al. (2017): sequential encoder;
- Song et al. (2018), Beck et al. (2018): graph encoder;

He ate the pizza with his fingers.

- Are improvements in graph encoders due to reentrancies?
- To answer, compare:
(1) Sequence: BiLSTM;
(2) Tree: TreeLSTM (Tai et al., 2015);
(3) Graph: Graph Convolutional Network (GCN; Kipf and Welling, 2017).

Sequential input (Konstas et al., 2017)

eat-01 :arg0 he :arg1 pizza :instrument finger :part-of he

Sequential input (Konstas et al., 2017)

Sequential input (Konstas et al., 2017)

eat-01 :arg0 he :arg1 pizza :instrument finger :part-of he

Tree-structured input

Tree-structured input

Tree-structured input

Tree-structured input

Graph-structured input

Graph-structured input

Data

- AMR R2: 39260 sentences
- AMR R1: 19572 sentences (subset of R1)

Comparison between models (dev set R1)

Comparison with previous work (test set R1)

Konstas: sequential baseline, Konstas et al. (2017)
Song: graph encoder (GRN), Song et al. (2018)

Comparison with previous work (test set R2)

Beck: graph encoder (GGNN), Beck et al. (2018)

Reentrancies

He ate the pizza with his fingers.

Model	Number of reentrancies		
	0	$1-5$	$6-20$
	(619)	(679)	(70)
Seq	42.94	31.64	23.33
Tree	+0.63	+1.41	+0.76
Graph	$\mathbf{+ 1 . 6 7}$	$\mathbf{+ 1 . 5 4}$	$\mathbf{+ 3 . 0 8}$

Long-range dependencies

He ate the pizza with a fork.

Model Max dependency length

	$0-10$ (307)	$11-50$ (297)	$51-200$ (18)
Seq	50.49	36.28	24.14
Tree	-0.48	$\mathbf{+ 1 . 6 6}$	+2.37
Graph	$\mathbf{+ 1 . 2 2}$	$\mathbf{+ 2 . 0 5}$	$\mathbf{+ 3 . 0 4}$

Generation example

REF tell your ex that all communication needs to go through the lawyer

Seq tell that all the communication go through lawyer
Tree tell your ex, tell your ex, the need for all the communication

Graph tell your ex the need to go through a lawyer

Conclusions

- Graph encoders based on GCN and BiLSTM gives best results for AMR-to-text generation;
- Reentrancies and long-range dependencies contribute to the improvements of graph encoders;
- Demo and source code: http://cohort.inf.ed.ac.uk/amrgen.html

Do reentrancies help with generating pronouns?

He ate the pizza with his fingers.

Contrastive pair analysis (Sennrich, 2017):

- Compute probability of a reference output sentence and the probability of a sentence containing a mistake;
- Compute accuracy of model in assigning a higher probability to the reference sentence.

Do reentrancies help with generating pronouns?

He ate the pizza with his fingers \rightarrow He ate the pizza with he fingers
\rightarrow He ate the pizza with him fingers
\rightarrow He ate the pizza with their fingers
\rightarrow He ate the pizza with her fingers

Model	Antecedent (251)	Type (912)	Num. (1840)	Gender (95)
Seq	96.02	97.70	94.89	94.74
Tree	96.02	96.38	93.70	92.63
Graph	96.02	96.49	$\mathbf{9 5 . 1 1}$	$\mathbf{9 5 . 7 9}$

Input	Model	BLEU	Meteor
Seq	Seq	21.40	22.00
Tree	SeqTreeLSTM	21.84	22.34
	TreeLSTMSeq	22.26	22.87
	TreeLSTM	22.07	22.57
	SeqGCN	21.84	22.21
	GCNSeq	23.62	23.77
	GCN	15.83	17.76
Graph	SeqGCN	22.06	22.18
	GCNSeq	23.95	$\mathbf{2 4 . 0 0}$
	GCN	15.94	17.76

More examples

$$
\begin{equation*}
h_{i}^{(k+1)}=\sigma\left(\sum_{j \in \mathcal{N}(i)} W_{\mathrm{dir}(j, i)}^{(k)} h_{j}^{(k)}+b^{(k)}\right), \tag{1}
\end{equation*}
$$

More examples

REF i dont tell him but he finds out.
Seq i didn't tell him but he was out.
Tree i don't tell him but found out.
Graph i don't tell him but he found out.

More examples

REF if you tell people they can help you , Seq if you tell him, you can help you!
Tree if you tell person_name you, you can help you . Graph if you tell them, you can help you .

More examples

REF i 'd recommend you go and see your doctor too.
Seq i recommend you go to see your doctor who is going to see your doctor.
Tree you recommend going to see your doctor too.
Graph i recommend you going to see your doctor too.

