
Simple Question Answering with Subgraph Ranking and Joint-Scoring 

Overview
Task: knowledge graph based simple question answering (KBSQA)
Knowledge Graph: multi-entity multi-relation directed graph containing fact 
triples (subject, relation, object)
Simple Question: can be answered by a single fact from knowledge graph
Example: “Which Harry Potter series did Rufus Scrimgeour appear in?” v.s. 
(Rufus Scrimgeour, book.book-characters.appears-in-book, Harry Potter and the
Deathly Hallows)
Our Method: subgraph ranking + joint scoring model + well-order loss
Result: new state of the art on SimpleQuestions dataset

Motivation
Challenges
(1) massive size of knowledge graph (billions of facts)
(2) variability of questions in natural language
Two-Step Solution
(1) subgraph selection
(2) fact selection
Conventional Approaches
(1) sequence labeling with BiLSTM-CRF + subgraph selection with n-grams
(2) match-scoring model + ranking loss

Problems
(1) subgraph is not ranked by relevance
(2) need leverage dependency between
mention–subjects and pattern–relations 
(3) ranking loss is suboptimal

Experiments
Dataset
SimpleQuestions: 108,442 questions
Train/Valid/Test: 75,910/10,845/21,687

Knowledge Graph
Freebase (FB2M): 2,150,604 entities/6,701 relations/14,180,937 facts

Results
Table 1. Subgraph Selection Results Table 2. Fact Selection Accuracy

Table 3. Error Decomposition (%) (total 3,157 errors)

Conclusions
(1) our ranking method improves subgraph selection
(2) our joint-scoring model with well-order loss improves fact selection
(3) incorrect subject or relation can still lead to correct answer
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Proposed Methods
(1) A subgraph ranking method with combined literal and semantic score

(2) A low-complexity joint-scoring CNN model

(3) A well-order loss

Features
(1) jointly consider both input pairs and their dependency
(2) dependency dynamically adjusted by |I| and |J| 
(3) subject mismatch induces larger loss
(4) penalize subject mismatch à prune incorrect relations

length of longest common subsequence

: pretrained GloVe vector

q: question
m: mention
p: pattern
s: subject
r: relation
S..: score
+/-: positive/negative
I: index set for subjects
J: index set for relations
f/g: character/word CNN
h: scoring map


