
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Confidential Review Copy. DO NOT DISTRIBUTE.

Supplementary: Sunny and Dark Outside?! - Improving Answer
Consistency in VQA through Entailed Question Generation

Anonymous EMNLP-IJCNLP submission

Abstract

In this supplementary document, we list
dataset construction details, training details,
and qualitative examples from our datasets and
consistency teacher module outputs.

1 Logic-ConVQA Dataset Creation

We use scene graph annotations from the Visual
Genome Dataset and slot-filler NLP techniques
to generate a dataset of consistent QA sets (L-
ConVQA). Currently, we only focus on attribute,
existential and relational consistency. We gener-
ate groups of questions phrased differently about
a certain concept to make consistent QA sets. For
example, for the attribute “white” of object “cup”
in the Visual Genome scene graph, we generate “is
the cup white? Yes”, “Is the cup black? No” and
“What color is cup? White”. Here is a summary
of our consistent sets:

Relational/Existential Consistency

• Is <object> <relation>
<subject>? Yes. For example, is
man standing near tree?, Yes

• Is there <object>? Yes, For ex-
ample, is there man? Yes.

• Is there <subject>? Yes
• Who/What is <relation>
<subject>? <object>. For example,
Who is standing near tree? Man

• Is <other object> <relation>
<subject>? No, Is <object>
<relation> <other subject>?
No. We cross verify with scene graph to
make sure these are “no”. However, the
scene graph isn’t exhaustively annotated for
all images and hence, these maybe noisy
sometimes.

Attribute Consistency

• What hypernym(<attribute>) is
<object>? <attribute>. For exam-
ple, “What color is cup? White”. We get
hypernyms using WordNet.

• Is <object> <attribute>? Yes
• Is <object>
opposite(<attribute>)? No.
We get opposite attributes using WordNet.

Some WordNet hypernyms and opposites are
noisy, so we manually generate a list of opposites
for some adjectives or action words. We also ob-
serve that counting questions are often noisy be-
cause of annotations not being exhaustive and non-
countable objects being annotated, hence, we skip
it. We also randomly substitute “can you see” or
“do you see” in place of “is there” to have diversity
in questions and make them more natural sound-
ing. We also filter by at least 15% area of bound-
ing box to image to make sure the questions are
about salient objects in the image.

2 Training Details

We implement all our Consistency Teacher Mod-
ule (CTM) networks using PyTorch (Paszke et al.,
2017). We use a learning rate of 1e− 5 for all our
models and we use the Adam (Kingma and Ba,
2014) method for optimization.

As mentioned in the main paper, CTM consists
of two submodules - Question Generator that gen-
erates similar-intent question from GT QA and
Consistency Checker that evaluates whether an-
swer to generated question in consistent to GT QA
or not.

2.1 Question Generator

Question Generator first concatenates the deep
features of the image and concatenated QA into
an embedding. Image features are obtained us-



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Confidential Review Copy. DO NOT DISTRIBUTE.

Table 1: Performance comparison of baseline VQA trained on VQA2.0, baseline VQA finetuned on ConVQA, and CMT. For
commonsense-based ConVQA, CMT produces the best results in terms of accuracy and consistency.

DATA L-ConVQA CS-ConVQA

Perf Con Avg Con Top1 Perf Con Avg Con Top1 Yes/No Num

a) VQA VQA2.0 36.25 71.36 70.34 26.13 59.61 60.03 65.49 31.39
b) FineTune CS-ConVQA 34.54 70.39 69.48 26.39 59.65 60.07 65.80 35.92
c) FineTune L-/CS-ConVQA 54.68 83.42 83.16 24.70 59.30 59.60 65.14 33.33
d) +CTM L/CS-ConVQA 54.6 83.23 82.79 25.94 60.39 60.78 66.63 36.89
e) FineTune L-/CS-ConVQA,VG 36.40 71.60 70.94 25.22 59.19 59.56 65.30 31.39
f) +CTM L/CS-ConVQA,VG 47.91 80.26 79.95 26.52 60.30 60.66 66.60 35.92
g) +CTMvg L/CS-ConVQA,VG 51.41 81.66 81.37 27.49 59.75 60.15 66.41 34.95

ing a ResNet152 (He et al., 2016). QA fea-
tures are obtained using an embedding layer for
each word in the question which is fed into a
1-layer question-encoder LSTM (Hochreiter and
Schmidhuber, 1997). We take the last output of
the question-encoder LSTM and concatenate that
with the deep image features. These concatenated
features are then fed into another 1-layer LSTM
to generate a similar-intent question. The out-
put LSTM is trained using teacher forcing and
a cross entropy loss. Top-5 probability-weighted
random-sampling is used during evaluation. The
ResNet152 Image encoder is pre-trained on Im-
ageNet and is kept frozen during training. The
question generator is trained only on L-ConVQA
for module refered to as CTM. For the mod-
ule refered to as CTMvg, the question genera-
tor is trained on a mix of L-ConVQA and Vi-
sual Genome. When adding Visual Genome in
the training for CTMvg, we just add the Visual
Genome QA pairs corresponding to the same im-
ages as the L-ConVQA train set.

2.2 Consistency Checker
Consistency Checker evaluates the consistency of
the original and the generated QA pairs and clas-
sifies them into three categories- consistent, con-
tradictory, or unrelated. It uses a ResNet152
(He et al., 2016) and LSTM’s (Hochreiter and
Schmidhuber, 1997) to encode image and QA
features similar to the Question Generator. The
concatenated features are then passed to a 3-
layer neural network with hidden neuron sizes
of 1024, 512 and 256 for predicting the three
classes. For both CTM and CTMvg, the consis-
tency checker is trained using only the L-ConVQA
training set augmented with selected inconsis-
tent/unrelated pairs. Inconsistent/unrelated pairs

are produced by simple techniques- changing the
answer word, flipping yes/no answers, replacing
entities in the scene graph triplets, and generating
unrelated questions from different triplet for any
one question in a pair of two consistent QA pairs.

2.3 Reinforcement-based training

We use a mix of CS-ConVQA, Logic-ConVQA
and Visual Genome questions to seed our ques-
tion generator. We answer the generated question
using the VQA. We only positively reward exam-
ples where the consistency classifier prediction is
above 90% for consistent class and the VQA con-
fidence is above 70%. VQA Confidence is effec-
tive at weeding out some questions that are non-
grammatical or irrelevant.

3 Quantitative Results

In the main paper, we report results for CTMvg
on the L/CS-ConVQA,VG dataset. We also tried
applying CTM (the module where question gener-
ator was trained only on L-ConVQA). We still see
improvements in consistency and accuracy over
the fine-tuned baseline (row f vs e).

Since the choice of seed QA pair is random,
there are slight fluctuations in the numbers across
multiple runs. However, we almost always see
similar gains of CTM compared to the fine-tuned
baselines when checkpoints are chosen by best
validation accuracy around 11k to 12k batch itera-
tions of batch size 8. The numbers reported were
the first observed numbers when we ran the exper-
iments. Checkpoints and code will be uploaded
publicly.



3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Confidential Review Copy. DO NOT DISTRIBUTE.

4 Qualitative Results

In the pages below, we list qualitative results
of our datasets - Logic-ConVQA (Figure 1) and
CommonSense-ConVQA (Figure 2). We also
list example outputs of our similar-intent question
generator (Figure 3), consistency checker (Fig-
ure 4), Consistency Teacher Module (CTM) based
training (Figure 5) and our improved VQA model
compared to the baseline VQA (Figure 6).

References
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 1: Qualitative examples from our automatically generated logic-based consistent VQA dataset (L-ConVQA). We show
two sets per image- an attribute-based set and a relation based set.

Figure 2: Qualitative examples from our human-annotated Common-Sense-based consistent dataset (CS-ConVQA).

Figure 3: Qualitative examples of our similar-intent question generator outputs. Seed QA is the seed question-answer pair
input to the generator along with the image and the Gen Q is the generated question.



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 4: Qualitative examples of our consistency checker performance. GT is ground truth.

Figure 5: Examples of training using CTM. Gen QA is question generated by our CTM question generator and answered by
VQA. Con Checker is whether our consistency checker deemed it as consistent. Incorrect reject was when the Con Checker
deemed the question as unrelated or the VQA had low confidence. Note that in the bottom right image, the con checker
understandably fails because it mistakenly thinks the sport is baseball.

Figure 6: Examples of our improved VQA consistency.


