
A Supplemental Material

A.1 Scaling properties of power objectives

The scaling properties of both α and β-divergence,
shown in Table 1, imply that if we do not enforce
the scale of the model to be 1 by normalizing it,
the model will be unable to learn. Indeed, we can
rewrite Dα(pD||exp (sθ)) as:

Dα(pD||exp (sθ))
= Dα(pD||pθ × Zθ)

=
1

α(α− 1)

∑
(x,y)∈D

(Zθ(x))
1−α (pθ(y|x))1−α

That makes the objective possible to minimize by
simply minimizing Zθ(x)∀x ∈ X — which does
not imply any learning from the data. It is also the
case with Dβ(pD||exp (sθ)):

Dβ(pD||exp (sθ))
= Dβ(pD||pθ × Zθ)

=
1

β(β − 1)

∑
(x,y)∈D

[
−β (Zθ(x))β−1 (pθ(y|x))β−1

+ (Zθ(x))
β
∑
y′∈Y

(pθ(y
′|x))β


=

1

β(β − 1)

∑
(x,y)∈D

(Zθ(x))
β−1×

−β(pθ(y|x))β−1 + Zθ(x)
∑
y′∈Y

(pθ(y
′|x))β


However, it is easy to derive that it is not the case
for the γ-divergence:

Dγ(pD||pθ)

=
∑

(x,y)∈D

log pθ(y|x)− 1

γ
log

∑
y′∈Y

(
pθ(y

′|x)
)γ

=
∑

(x,y)∈D

[
sθ(x, y)− logZθ(x)

−1

γ
log

1

(Zθ(x))
γ

∑
y′∈Y

exp (γsθ(x, y
′))


=

∑
(x,y)∈D

sθ(x, y)− 1

γ
log

∑
y′∈Y

exp (γsθ(x, y
′))


= Dγ(pD||exp (sθ))

A.2 NCE as a binary divergence
The divergence DKL(p

C
D||pCθ ) can be written as:

DKL(p
C
D||pCθ ) =

∑
(x,y)∈X×Y

pCD(x, y) log
pCD(x, y)

pCθ (x, y)

=
∑

(x,y)∈X×Y

pD(y|x)
pD(y|x) + kpn(y)

×

[
log

pD(y|x)
pD(y|x) + kpn(y)

− log
pθ(y|x)

pθ(y|x) + kpn(y)

]
We can remove the first term, which is not depen-
dent on θ, and will not intervene in the objective
function. If we do the same with the divergence
DKL(1 − pCD||1 − pCθ ) and add them, we obtain
the following:

−
∑

(x,y)∈X×Y

(
pD(y|x)

pD(y|x) + kpn(y)
log

pθ(y|x)
pθ(y|x) + kpn(y)

+
kpn(y)

pD(y|x) + kpn(y)
log

kpn(y)

pθ(y|x) + kpn(y)

)
With NCE, we consider that examples are coming
from the mixture 1

k+1pD+
k
k+1pn, instead of being

uniformly spread, which transforms the objective
into:

−
∑

(x,y)∈X×Y

(
pD(y|x) log

pθ(y|x)
pθ(y|x) + kpn(y)

+kpn(y) log
kpn(y)

pθ(y|x) + kpn(y)

)
We can then rewrite it as a sum of expectations:

−
∑
x∈X

(
Ey∼pD(.|x)

[
log

pθ(y|x)
pθ(y|x) + kpn(y)

]
+kEŷ∼pn

[
log

kpn(ŷ)

pθ(ŷ|x) + kpn(ŷ)

])
That becomes the NCE objective once we approx-
imate the second expectation over k samples:

−
∑

(x,y)∈D

[
log

pθ(y|x)
pθ(y|x) + kpn(y)

+

k∑
i=1

log
kpn(ŷi)

pθ(ŷi|x) + kpn(ŷi)

]
We should note that minimizing the NCE ob-

jective is then equivalent to minimizing both a f -
divergence and a Bregman divergence. For exam-
ple, by making a variable change between pCθ and



pθ, we can circle back to writing the NCE objec-
tive as a Bregman divergence Dφ(pD||pθ), with
φ(x) = x log x − (1 + x) log(1 + x), as shown
in Gutmann and Hirayama (2011).

A.3 Objective-specific ‘perplexity’
See Figure 5. We can observe that the behavior
of the objective-specific counterparts to perplexity
closely mirrors it, even when the values are quite
distant.
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Figure 5: Validation results by epoch obtained on the PTB with the exact objectives , derived from MLE, during
training. We give the validation perplexity (dotted gray) and the ‘counterpart’ to perplexity corresponding to the
training objective (in color). Each color corresponds to a different objective, and we use different shades to indicate
that changing the value of the power parameter makes the tracked values different.

A.4 Complete sampling-based objectives
See Table 6.

A.5 Detailed performance of sampling
based-objectives

See Figures 6,7,8 and 9.



Objective

Approximated Softmax −
∑

(x,y)∈D

[
sθ(x, y)− log pn(y)− log

k∑
i=1

exp (sθ(x, ŷi)− log pn(ŷi))

]

α ∈ R \ {0, 1} 1
α(α−1)

∑
(x,y)∈D

 exp (sθ(x,y)−log pn(y))
k∑
i=1

exp (sθ(x,ŷi)−log pn(ŷi))

1−α

β ∈ R \ {0, 1} 1
β(β−1)

∑
(x,y)∈D


k∑
i=1

exp (β(sθ(x,ŷi)−log pn(ŷi)))(
k∑
i=1

exp (sθ(x,ŷi)−log pn(ŷi))
)β − β exp ((β−1)(sθ(x,y)−log pn(y)))(

k∑
i=1

exp (sθ(x,ŷi)−log pn(ŷi))
)β−1



γ ∈ R \ {0, 1} −
∑

(x,y)∈D

[
sθ(x, y)− log pn(y)− 1

γ log
k∑
i=1

exp (γ(sθ(x, ŷi)− log pn(ŷi)))

]

Noise Contrastive Estimation −
∑

(x,y)∈D

[
log exp (sθ(x,y))

exp (sθ(x,y))+kpn(y)
+

k∑
i=1

log kpn(ŷi)
exp (sθ(x,ŷi))+kpn(ŷi)

]

α ∈ R \ {0, 1} 1
α(α−1)

∑
(x,y)∈D

[(
exp (sθ(x,y))

exp (sθ(x,y))+kpn(y)

)1−α
+

k∑
i=1

(
kpn(ŷi)

exp (sθ(x,ŷi))+kpn(ŷi)

)1−α]

β ∈ R \ {0, 1}

∑
(x,y)∈D

[
− 1
β−1

((
exp (sθ(x,y))

exp (sθ(x,y)+kpn(y))

)β−1
+

k∑
i=1

(
kpn(ŷi)

exp (sθ(x,ŷi))+kpn(ŷi)

)β−1)

+ 1
β

(
exp (βsθ(x,y))+(kpn(y))β

(exp (sθ(x,y)+kpn(y)))
β +

k∑
i=1

exp (βsθ(x,ŷi))+(kpn(ŷi))
β

(exp (sθ(x,ŷi))+kpn(ŷi))
β

)]

γ ∈ R \ {0, 1}

∑
(x,y)∈D

[
− log exp (sθ(x,y))

exp (sθ(x,y)+kpn(y))
− 1

γ−1 log
k∑
i=1

(
kpn(ŷi)

exp (sθ(x,ŷi))+kpn(ŷi)

)γ−1

+ 1
γ log

(
exp (γsθ(x,y))+(kpn(y))γ

(exp (sθ(x,y)+kpn(y)))
γ +

k∑
i=1

exp (γsθ(x,ŷi))+(kpn(ŷi))
γ

(exp (sθ(x,ŷi))+kpn(ŷi))
γ

)]

Table 6: Complete objectives of power generalizations of the Approximated Softmax and Noise Contrastive Esti-
mation objective functions, based on α, β, and γ divergences. All the samples (ŷi)ki=1 are drawn from the auxiliary
distribution pn.
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Figure 6: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the AS objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the PTB.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 7: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the NCE objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the PTB.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 8: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the AS objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the WT2.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).
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Figure 9: Validation cross-entropy values for the best epoch obtained for models trained with objectives derived
from the NCE objective with α-divergences (top), β-divergences (middle) and γ-divergences (bottom) on the WT2.
Words are grouped into 5 buckets of equal size, following their frequencies. We display values for each bucket
from the most frequent words (left) to less frequent ones (right).


