
9 Appendix

A Derivation of BottleSum

Ex Loss

This is a derivation of the loss equation (3) used in
section 2, starting with the Information Bottleneck
(IB) loss given in eq 2:
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The goal here is to consider how to interpret this
equation when we only have access to single val-
ues of source S and relevance variabel Y at a
time. In the original IB formulation, a distribution
p(

˜

S|S) to go from sources to summaries is learned
by optimizing this expression across the distribu-
tion of source-target pairs (s, y). In the case of
BottleSum

Ex, the goal is to consider this expression
on a case-by-case basis, not requiring training over
a large distribution of pairs.

First, we consider an alternate form of the equa-
tion above:
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where pmi(x, y) =

p(x,y)
p(x)p(y) denotes pointwise

mutual information.
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As stated above, we want to consider this for only
single values of s and y at a time, so for these
values we can investigate the applicable terms of
these expectations:
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This is the expression we are then aiming to opti-
mize, as it covers all terms in the original IB ob-
jective that we have access to on a case-by-case
basis.

As in the original IB problem, we can think of
learning a distribution p(s̃|s). However, we are
now only taking an expectation over ˜

S and so we
simply collapse all probability onto the setting of
s̃ that optimizes this expression. Simply:

p(s̃|s) = 1 for chosen summary, 0 otherwise (8)

This results in finding s̃ that optimizes:
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Any terms that rely only on s and y will be con-
stant and so can be collected into coefficients. As
well, remembver that we set p(s̃|s) = 1. Doing
rearranging:
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This is equivalent to optimizing:

log
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for some positively signed �1.


