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Abstract

In this work, we re-examine the problem of
extractive summarization for long text. In-
spired by the reading cognition of human be-
ing, the process of extracting summary can be
divided into two stages: 1) the rough read-
ing looking for sketched information; 2) the
subsequent careful reading repeatedly select-
ing essential sentences as summary. To simu-
late such two-stage procedures, we propose a
novel approach for extractive summarization.
The overall framework is formulated as a con-
textual bandit trained with policy gradient re-
inforcement learning. We adopt a variant of
convolutional neural network to encode gist of
paragraphs to mimic rough reading, and a ban-
dit policy with an adapted termination mecha-
nism is devised to analogy careful reading. Ex-
periments on the CNN and DailyMail datasets
demonstrate that our proposed model can pro-
vide high-quality summaries with varied num-
ber of sentences at diversed positions and sig-
nificantly outperform the state-of-the-art ex-
tractive methods.

1 Introduction

Automatic text summarization has wide popular-
ity in NLP applications such as producing di-
gests, headlines and reports. Among the super-
vised methods, two main types are usually ex-
plored, namely abstractive and extractive summa-
rizations (Nenkova et al., 2011). Compared with
abstractive approaches, extractive methods can be
applied in more realistic situations as they are
faster, simpler and more reliable on grammar as
well as semantic information (Yao et al., 2018).

Recent works (Cheng and Lapata, 2016; Nal-
lapati et al., 2017; Yasunaga et al., 2017; Feng
et al., 2018) consider extractive summarization as
a sequence labeling task, where each sentence is
individually processed and determined whether it

should be extracted or not. Various neural net-
works are widely used to label each sentence and
trained using cross-entropy loss to maximize the
likelihood of the ground-truth labeled sequences,
which may derive the mismatch between the cross-
entropy objective function and the evaluation cri-
terion. To solve such issue, some reinforce-
ment learning based methods (Wu and Hu, 2018;
Narayan et al., 2018; Yao et al., 2018) directly op-
timize the evaluation metric by combining cross-
entropy loss with rewards from summary evalu-
ation measures and train model parameters with
policy gradient reinforcement learning. However,
they still sequentially process text and usually fo-
cus on earlier sentences over later ones due to the
sequential nature of selection (Dong et al., 2018).

Although great efforts have been devoted to
this filed, most of the existing approaches ne-
glect human’s nature of reading text and form-
ing summaries. Human beings are very good at
refining the main idea of a given text and im-
plement it based on their reading cognitive pro-
cess, which in general includes pre-reading, read-
ing and post-reading (Avery and Graves, 1997;
Saricoban, 2002; Toprak and Almacıoğlu, 2009;
Pressley and Afflerbach, 2012). In the pre-reading
stage, they roughly preview the whole text to form
an initial cognition and extract general but coarse-
grained information at the meantime. Based on
such prior knowledge, the subsequent reading
stage is a conscious process that focuses on target-
specific purposes to search fine-grained details
through repeated skimming and scanning. For
post-reading, re-reading is performed to check the
missed details. The three-stage reading process
makes it effective in capturing essential sentences
of text as the extracted summarization.

Inspired by the above human being’s reading
cognitive process, in this paper, we re-examine the
problem of extractive summarization and propose
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Figure 1: A case of how human being extracts summary. The article is from CNN/DailyMail dataset.

a new approach HER (Human-bEing-Reading in-
spired extractive summarization). It consists of
two subsequent stages called rough reading and
careful reading. In rough reading, coarse-grained
information of the original context is identified to
form a general cognition. A specific case is shown
in Figure 1. In Figure 1 (a) and (b), after browsing
on the whole article, the main idea is outlined and
the text is roughly divided into three parts based on
the gist of paragraphs at the meantime. Each part
describes related but not the same contents. To
implement the rough reading process, we device
a hierarchical neural network to encode sentence
vectors and derive a document representation as
global feature for the main idea. Meanwhile, a
variant convolutional neural network (CNN) is uti-
lized to focus on different paragraphs and encode
local features to present various parts of the text.

During careful reading, the model searches for
specific but important details through re-readings
to cover the content and extract essential fine-
grained information as the final summary. For in-
stance, as shown in Figure 1 (c), after rough read-
ing, two sentences close to the main idea “Boston
Bruins won Stanley Cup” may be selected firstly.
Then an earlier and more detailed sentence about
“fans rioting” is appended to the summary by per-
forming re-reading. It is a combination of people’s
reading and post-reading process. To accomplish
this, we propose a neural network to decode each
sentence to a real-number score. A bandit policy
with an adapted termination mechanism is then de-
vised to form summary based on sentence scores.

In our HER model, the whole process is for-
mulated as a contextual bandit which we train an
agent to solve using policy gradient reinforcement
learning. The agent takes an action which is a to-
be-selected sentence set, and then receives a re-

ward based on the correlation between extractive
summary and gold-standard reference summary.
The contributions of our work are as follows:

• We propose a brand new extractive summariza-
tion method that simulates human being’s read-
ing cognitive process. The whole framework
is formulated as a contextual bandit problem
in which two stages named rough reading and
careful reading are devised, respectively.
• In rough reading, a hierarchical neural network

is used to encode the whole document and a
CNN-based network is adopted to capture para-
graphical features. In careful reading, a bandit
policy with an adapted termination mechanism
is devised to flexibly select various but proper
numbers of sentences as summaries.
• Experiments conducted on the CNN and Dai-

lyMail datasets show our proposed model out-
performs the state-of-the-art extractive methods
and provides high-quality summaries with var-
ied number of sentences at diverse positions.

2 The HER Model

In this section, we introduce the overall frame-
work of our model HER. We formulate extractive
summarization as a contextual bandit trained using
policy gradient reinforcement learning where an
agent chooses a sentence set as an action based on
sampled context and then receives a reward. As il-
lustrated in Figure 2, the framework can be divided
into two stages: rough reading and careful read-
ing. During rough reading, a document is encoded
into sentence vectors {S1, S2, . . . , SN} and a fea-
ture set denoted as F , which includes one global
feature D0 describing the whole documentary in-
formation and K local features {L1, L2, . . . , LK}
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Figure 2: The overall framework of HER is formulated as a contextual bandit and can be divided into a two-stage
process containing rough reading and careful reading.

depicting paragraphical contents1. In careful read-
ing, sentence vectors are decoded into real-number
scores called sentence affinities {π1, π2, . . . , πN},
which can be considered as an estimation of sen-
tence correlation to cover the context. Then a ban-
dit policy is used to repeatedly choose unique sen-
tence until the termination mechanism is triggered.
Next, we will detail the preliminaries in Sec. 2.1,
the rough reading stage in Sec. 2.2, and the careful
reading stage in Sec. 2.3. The training process is
illustrated in Sec. 2.4.

2.1 Preliminaries

In contextual bandit, a context is sampled and
shown to the agent, the agent selects an action and
then receives a reward which partly depends on the
sampled context. The agent’s goal is to quickly
learn to choose actions which yield more favorable
distribution over rewards.

In our model, extractive summarization can be
formulated as a contextual bandit. Specifically,
context including a document as well as its ex-
tra information F extracted from rough reading
is sampled and shown to the agent. The goal of
the task is to extract a subset of M ∈ [1, N ] sen-
tences out of a N -length document and M is var-
ious for different documents. So a sequential sen-
tence indices a = a1, . . . , aM can be considered
as an action where at ∈ [1, N ], t ∈ [1,M ] and
there are 2N − 1 optional actions in total. After
an action a is taken, which means {Sa1 , . . . , SaM }
is formed as the extractive summary implemented
through careful reading, the agent will receive a

1Although pre-trained models like BERT (Devlin et al.,
2018) or Skip-Thought (Kiros et al., 2015) can also be used
as encoders, they might be inappropriate in our model as the
update taken by policy gradient may make little difference on
these large pre-trained models.

reward R(a;G). G is the manually-created and
gold-standard summary of document D. R(a;G)
represents the match degree betweenG and the ex-
tractive summary induced by a. Under such per-
spective, the problem for us is to train an agent
which is based on document features from rough
reading and takes an action to form extractive sum-
marization in careful reading.

2.2 Rough Reading
The rough reading aims to produce the feature set
F including global and local features to form a
general cognition on a given document. F is con-
sidered as the contextual information in our frame-
work. First, a hierarchical biLSTM is used to en-
code a document and obtain hidden sentence em-
beddings {S1, S2, . . . , Sn}, where Si ∈ Rds and
ds is the embedding size. Second, global feature
D0 ∈ Rds is computed by an average pooling of
all the sentence vectors, which can also be repre-
sented by the last hidden unit of the sentence-level
biLSTM. Third, we devise a variant of the CNN
architecture to refine gist of different paragraphs
and generate multiple local features on the sen-
tence level, which is different from previous meth-
ods (Kim, 2014; Narayan et al., 2017; Yao et al.,
2018) processing on the word level. In detail, a
combination of N sentence vectors is,

S1:N = S1 ⊕ S2 ⊕ . . . SN , (1)
where ⊕ is the concatenation operator and S1:N ∈
RN×ds . A convolution operation involves a filter
w ∈ RH×ds to produce a feature c ∈ RN−H+1

sliding a window of H sentences. Then a max-
over-time pooling operation is applied to produce
ĉ = max{c} considered as the salient local fea-
ture within filter w. We altogether generate K
local features by using multiple filters varying K
window sizes to present different parts of context.
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2.3 Careful Reading

The careful reading adopts an ε-greedy policy to
select one sentence at each step based on the con-
textual information provided by the rough reading
and sentence affinities computed by the sentence
decoder. Such process will be repeated until the
termination mechanism is triggered and all the se-
lected sentences can be formed as a summary.

2.3.1 Sentence Decoder
In order to extract high-quality summaries, we
compute the sentence affinities, which is observed
effective in Dong et al. (2018), by a sentence de-
coder. The sentence affinities are calculate by the
following principles: (1) Salience (The sentences
whose meanings are close to the central idea
should be emphasized); (2) Coverage (The sen-
tences that match different paragraphical informa-
tion should be encouraged); (3) Redundancy (The
unselected sentences which are similar to already
extracted ones should be inhibited).

Therefore, we utilize a decoder Dec1 to high-
light the sentences presenting Salience or Cover-
age by applying the global and local features from
rough reading. Additionally, a second encoder
Dec2 is devised to screen the sentences that might
have Redundancy. Specifically,

S′t = St ⊕D0 ⊕ L1:K , t = 1, . . . , N, (2)

q1 = Dec1(S′1:N ), (3)

q2 = Dec2(S′1:N × (1− q1)), (4)

where Dec1 and Dec2 are both constructed with
a multilayer perceptron. We use q = αq1 + (1 −
α)q2 as the final sentence affinities where α is a
pre-specified constant.

2.3.2 Bandit Policy
Recall that an action contains a set of selected sen-
tences in our framework. Hence the agent chooses
one sentence every time until it believes all the
selected sentences are good enough to cover the
document contents. Selecting sentences with high
affinities as summary could be an intuitive choice.
However, some low-value sentences might also be
important but are easily ignored. They should be
explored to form the summary as well. Hence we
adopt ε-greedy to extract one sentence every time
until terminated. Specifically, the agent samples
a sentence index at from the multinomial distri-
bution with sentence affinities {π1, π2, . . . , πN}

as probabilities, where at ∈ [1, N ] and N is the
document length. The new sentence Sat will be
appended in the summary with a probability of
1 − ε. Otherwise the agent randomly picks one
sentence with a probability of ε as an exploration.
ε-greedy policy could raise the probability of low-
value sentences to be extracted, and each extrac-
tive step in our method is a repeated sampling-
without-replacement.

2.3.3 Termination Mechanism
In HER, we propose a termination mechanism
that is independent on future rewards to make our
model flexible in extracting summary with various
numbers of sentences. This mechanism relies on
the distribution of sentence affinities π1:N .

r ∼ Bernoulli(1,max(p̂,max(π1:N ))), (5)

p̂ =
max(π1:N )−min(π1:N )

max(π1:N )
, (6)

where r ∈ {0, 1} is sampled from the binomial
distribution and r = 0 terminates the sentence ex-
traction. With this mechanism, the agent will stop
extraction with high probability as long as the dif-
ferences among affinities are small enough or all
the sentence affinities are very low.

2.4 Training
After the agent takes an action a, we can derive an
summary induced by a out of a documentD. Then
the agent would receive a reward R(a;G) where
G is the gold-standard summary of D. R(a;G)
is computed by the average of three variants of
ROUGE (Lin, 2004). To balance precision and re-
call, we use F -score here,

R(a;G) =
1

3
(ROUGE-1f (a;G)

+ROUGE-2f (a;G) + ROUGE-Lf (a;G)).
(7)

We represent the whole extractive neural network
as pθ(·|D) containing the encoder in rough read-
ing and the decoder in careful reading. The goal
of our model is to find parameters θ of pθ to pro-
duce high-quality summary and maximize the re-
wards (c.f. Eq. (8)). But we cannot obtain gradi-
ent to maximize Eq. (8) with gradient ascent as it
is discretely sampled. So we use the likelihood ra-
tio gradient estimator from reinforcement learning
and stochastic optimization (Williams, 1992; Sut-
ton et al., 2000) to acquire the gradient by Eq. (9).

We use Q(D) in Eq. (10) to construct pθ(a|D)
following Dong et al. (2018), where z(D) =
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∑
t π(D)t and ε is the exploration probability of

the ε-greedy denoted in Sec. 2.3.2. M is the
number of extracted sentences this is determined
jointly by the termination mechanism and the doc-
ument context. Q(D)

1
M is adopted to present

pθ(a|D) to avoid extracting fewer or more sen-
tences when maximizing the objective function.
Hence, 5θlogpθ(a|D) in Eq. (9) can be easily
computed.

J(θ) = E[R(a;G)] (8)

5θJ(θ) = E[5θlogpθ(a|D)R(a;G)] (9)

Q(D) =

M∏
j=1

(
ε

N − j + 1
+

(1− ε)π(D)aj

z(D)−
∑j−1
k=1 π(D)ak

) (10)

However, the exact document distribution is
unknown and we cannot evaluate the expected
value in Eq. (9). So we use sampling to esti-
mate it instead. Given a document-summary pair
(D,G), our HER samples B summaries induced
by a1, . . . , aB from pθ(·|D) and obtain all the gra-
dients, then the average value is considered as
the estimation. As sample-based gradient estimate
may have high variance, we use a baseline for vari-
ance reduction. The gradient of the objective func-
tion is finally represented as,

5θJ(θ) ≈ 1

B

B∑
b=1

5θlogpθ(ab|D)(R(ab, G)− r̄) (11)

where we choose self-critical reinforcement learn-
ing to acquire the baseline r̄ following Ranzato
et al. (2015); Rennie et al. (2017); Paulus et al.
(2017); Dong et al. (2018) computed by greedy
encoding r̄ = R(agreedy;G). More concretely,
agreedy = argmaxpθ(a|D) and this baseline sat-
isfies that the probability of a sampled sequence
would be increased when the summary it induces
is better than what is obtained by greedy decoding.
The procedure of HER is shown in Algorithm 1.

3 Experiment Settings

In this section we present our experimental setup
for evaluating the performance of the proposed
HER, including the datasets, evaluation protocol,
baselines and implementation details.

Datasets We evaluated our models on three
datasets: the CNN, the DailyMail and the com-
bined CNN/DailyMail (Hermann et al., 2015; Nal-
lapati et al., 2016) and use the standard splits

Algorithm 1 Procedure of HER
Input A randomly sampled (D,G) pair

1: S1:N , D0, L1:K = Encoder(D) . Rough Reading
2: π1:N = Decoder(S1:N , D0, L1:K) . Careful Reading
3: Initialize loss1:B = 0, sumloss = 0
4: for c = 1, . . . , B do
5: t← 0
6: while t ≤ |D| and NotTerminated do
7: if random() < ε then
8: randomly select at
9: else

10: at ∼ Pr(N,π1:N )

11: lossb ∗= ( ε
N−t+1

+
(1−ε)πat∑

j πj−
∑t−1

k=1
πak

)

12: t← t+ 1
13: lossb ← log(lossb)/t
14: Compute reward Rb = R(a;G)

15: r̄ = R(agreedy;G) . Training
16: for b = 1, . . . , B do
17: sumloss += (lossb ∗ r̄−Rb

Rb
)

18: sumloss← sumloss/B
19: θ ← θ + λ5sumloss

of Hermann et al. (2015) for training, validation,
and testing (90, 266/1, 220/1, 093 documents for
CNN and 196, 961/12, 148/10, 397 for Daily-
Mail) with the same setting in See et al. (2017).

Evaluation We evaluate summarization quality
using F1 ROUGE (Lin, 2004) including unigram
and bigram overlap (ROUGE-1 and ROUGE-2)
to assess informativeness and the longest com-
mon subsequence (ROUGE-L) to assess fluency
with the reference summaries. We obtain ROUGE
scores using a faster python implementation2 for
training and evaluation, and the standard pyrouge
package3 for testing following Dong et al. (2018).

Baselines We compare our proposed HER
against four kinds of extractive methods: (1) Lead-
3 model simply selects the first three sentences.
(2) NN-SE (Cheng and Lapata, 2016) and Sum-
maRuNNer (Nallapati et al., 2017) are sequence
labeling task and trained with cross-entropy loss.
(3) Refresh (Narayan et al., 2018), DQN (Yao
et al., 2018) and RNES (Wu and Hu, 2018) extract
summary via reinforcement learning. (4) BAN-
DITSUM (Dong et al., 2018) considers the task
as a contextual bandit but fails to simulate human
reading recognition process.

Implementation Details We initialize word
embeddings with 100-dimension Glove embed-
dings (Pennington et al., 2014). In rough reading,

2https://github.com/pltrdy/rouge
3Pyrouge is a Python package. We compute all

ROUGE scores with parameters “-a -c 95 -m -n 4 -w
1.2.” Refer to https://pypi.python.org/pypi/
pyrouge/0.1.3

https:// github.com/pltrdy/rouge
https://pypi.python.org/pypi/pyrouge/ 0.1.3
https://pypi.python.org/pypi/pyrouge/ 0.1.3
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the encoder is hierarchical and each layer is a two-
stacked BiLSTM with a hidden size of 200. There-
fore, sentence vectors and the document represen-
tation D0 have a dimension of 400. For the vari-
ant CNN, we adopt filter windows H in {1, 2, 3}
with 100 feature maps each and generate K = 3
local representations for each document. In care-
ful reading, we set α = 0.5 for sentence decoder
and ε = 0.1 for bandit policy. We also bound the
minimum and maximum number of selected sen-
tence to be 1 and 10 for terminal mechanism. Dur-
ing training, we use the optimizer Adam (Kingma
and Ba, 2014) with a learning rate of 10−5, beta
parameters as (0, 0.999) and a weight decay of
10−6 to maximize the objective function following
Dong et al. (2018). We employ gradient clipping
of 1 for regularization and sample B = 20 times
for each document. We train our model within two
epochs. During the test, we choose the whole doc-
ument as the extractive summary if its length is
less than 3 sentences since the local features can-
not be obtained through the CNN-based network.

4 Experimental Results

4.1 Quantitative Analysis

We first report the ROUGE metrics on the com-
bined CNN/DailyMail test sets in Table 1 and the
separate results in Table 2. We can get several ob-
servations from the tables.

Firstly, our model generally performs the best
and even surpasses 42 on ROUGE-1 score on the
combined CNN/DailyMail dataset. It also shows
better results on the separate datasets. We argue
that global and local features from rough read-
ing can help extract summaries by capturing deep
contextual relations, and the designed structure in
careful reading makes it more flexible in select-
ing sentence sets. Hence a two-stage framework
based on the human’s reading cognition is more
appropriate for extractive summarization.

Secondly, directly optimizing the evaluation
metric by combining cross-entropy loss with re-
wards may improve the extractive results. RL-
based methods, Refresh (Narayan et al., 2018) and
RNES (Wu and Hu, 2018), perform better than
the sequence labeling methods like SummaRuN-
Ner (Nallapati et al., 2017). BANDITSUM (Dong
et al., 2018) generally performs better than the
other baselines, and it reports that framing the ex-
tractive summarization based on contextual bandit
is more suitable than sequential labeling setting

Model ROUGE
R1 R2 RL

Lead-3 40.0 17.5 36.2
SummaRuNNer 39.6 16.2 35.3
DQN 39.4 16.1 35.6
Refresh 40.0 18.2 36.6
RNES 41.3 18.9 37.6
BANDITSUM 41.5 18.7 37.6
HER 42.3 18.9 37.9

Table 1: Results on the combined CNN/DailyMail test
sets. We report F1 scores of ROUGE-1 (R1), ROUGE-
2 (R2), and ROUGE-L (RL). The result of Lead-3 is
taken from Dong et al. (2018).

Model CNN DailyMail
R1 R2 RL R1 R2 RL

Lead-3 28.8 11.0 25.5 41.2 18.2 37.3
NN-SE 28.4 10.0 25.0 36.2 15.2 32.9
Refresh 30.4 11.7 26.9 41.0 18.8 37.7
BANDITSUM 30.7 11.6 27.4 42.1 18.9 38.3
HER 30.7 11.5 27.5 42.7 19.0 38.5

Table 2: Results of the test sets on the CNN and Daily-
Mail datasets separately.

and has more search space than other RL-based
methods (Narayan et al., 2018; Yao et al., 2018;
Wu and Hu, 2018).

4.2 Ablation Test
Next, we conduct ablation test by removing the
modules of the proposed HER step by step. Firstly,
we replace the automatic termination mechanism
with a fixed extracting strategy that always selects
three sentences for every document and present the
model as HER-3. Based on HER-3, we also re-
move bandit policy, local net, general net gradu-
ally, and denote them as HER-3 w/o policy, HER-
3 w/o policy & local net and HER-3 w/o policy &
rough reading. The results are reported in Table 3
and it proves the effectiveness of each proposed
module. Firstly, HER constructed with an auto-
matic termination mechanism is more flexible and
reliable in extracting various numbers of sentences
varying different documents. Secondly, HER use
ε-greedy to select sentences in order to raise the
exploration chances on discovering important but
easily ignored information. Thirdly, general cog-
nition from rough reading process is useful in ex-
tractive summarizarion.

4.3 A Closer Look
To verify whether our proposed model HER can
simulate human beings’ reading cognitive process,
and whether such simulation are inherently help-
ful on extractive summarization, we conduct ex-
tensive evaluations that try to answer the following
three questions.
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Model ROUGE
R1 R2 RL

HER 42.3 18.9 37.9
HER-3 42.0 18.5 37.6
HER-3 w/o policy 41.7 18.3 37.1
HER-3 w/o policy&L 41.2 18.4 37.0
HER-3 w/o policy&F 40.6 18.2 36.9

Table 3: The results of ablation test on the test split. L
and F are short for local net and rough reading.
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Figure 3: The statistics of model HER, BANDIT-
SUMT (Dong et al., 2018), HER w/o Local Net on the
selected sentences’ indexes varying different document
lengths. This is reported on the documents the length
of which is less than 80 of the test split.

(1) Can CNN-based network extract local fea-
tures of different paragraphs?
In Figure 3, we report the distribution of selected
sentences’ positions on our proposed model HER,
BANDITSUM and HER w/o Local Net. Each
model is shown on testing after training 10k, 50k,
100k steps. We observe that all the three models
can focus on different parts of the context to form
summary at first and BANDITSUM performs the
best after training 10k steps. However, with train-
ing steps growing, BANDITSUM and HER w/o
Local begin to prefer earlier sentences. HER, on
the other hand, can focus on various paragraphs
and extract information from different parts of the
texts with constant training. The contextual ban-
dit (CB) based frameworks seems to be able to
attend on various parts of the contexts to some

Two spotted leopards, two Macaque monkeys and a 
brown bear will be returned to Marian Thompson…

Sentence HER
HER w/o 

policyAffinity

0.873

State officials have no legal power to inspect the 
cages before the animals are returned…

Of the 50 animals Thompson released, 48 were 
killed by law enforcement, while two primates were 
killed by the other animals, zoo officials said.

yesyes

noyes

yesno0.767

0.297

Index

13

He set off a wide scare in October when he released 
50 potentially dangerous animals from his farm 
before shooting himself.

0.872 yes yes

2

3

4

13

Figure 4: A case on sentence selection of HER and
HER w/o policy. The article is from CNN dataset.
The highlighted indices indicate the corresponding sen-
tences should be extracted as summary.
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Figure 5: The statistics on extracted sentence number
of our model. Frequency is the number of documents.

degree in the beginning. However, with constant
training, both BANDITSUM and HER w/o Local
start focusing on earlier sentences since the nature
that sentences similar to the main idea usually lie
on the head of the text. As our proposed HER is
equipped with a variant CNN that extracts local
features, our model can focus on gist of paragraphs
rather than only the first several sentences, which
also encourages the exploration on extracting in-
formation from various positions more flexibly.
(2) Can the proposed bandit policy discover
low-score but easily ignored information?
To answer this question, we demonstrate a detailed
case on sentence selection in Figure 4. We observe
that although the 4th sentence has a high affinity,
it should not be included in the summary since its
meaning is close to the 3rd sentence which has al-
ready been extracted. Instead, the 13th sentence is
supposed to be selected though it has low affinity.
Since our HER adopts the ε-greedy policy, it can
explore such sentence and extract it out correctly.
(3) Can HER extract varied but proper num-
bers of sentences?
We answer this question by drawing the fre-
quency distribution of extracted sentence num-
bers by our model on the test set of combined
CNN/DailyMail, and Figure 5 exhibits the results.
We observe that the frequency distribution of ex-
tracted sentence number is basically similar to
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Model Overall Coverage Non-
Redundancy

HER w/o Dec2 2.88 2.81 2.81
HER w/o L 3.02 2.96 2.75
BANDITSUM 2.06 2.07 1.91
HER 1.81 1.75 1.97

Table 4: Average rank of human evaluation in terms of
overall performance, coverage, and non-redundancy. L
is short for local Net. Lower score is better.

that of the gold-standard summary. Compared
with BANDITSUM which extracts fixed number
of sentences, our model shows more flexibility and
extensibility on extractive summarization.

4.4 Human Evaluation

Lastly, we conduct a qualitative evaluation. Fol-
lowing Wu and Hu (2018), we randomly sam-
ple 50 documents from the test set on the com-
bined CNN/DailyMail dataset and ask three volun-
teers to evaluate the summaries extracted by HER
w/o Dec2, HER w/o Local Net, BANDITSUM
and HER, respectively. HER w/o Dec2 only uses
Eq. (3) to compute sentence affinities without in-
hibiting redundant sentences. For each document-
summary pair, they are asked to rank the output of
each system on three aspects, namely overall qual-
ity, coverage and non-redundancy. Notice that the
best one will be marked rank 1 and so on, and two
system would be ranked the same if their extracted
summaries are identical. We report the average re-
sults in Table 4 and it shows that our HER is lead-
ing than BANDITSUM on overall quality and cov-
erage. Additionally, HER w/o Dec2 performs the
worst on non-redundancy as it does not specialize
these unselected sentences which are similar to al-
ready extracted ones. Furthermore, HER w/o Lo-
cal Net takes on bad performance on coverage be-
cause the local features can focus on paragraphical
messages and help to refine thorough information.

5 Related Work

Extractive Text Summarization Researchers
have developed many statistical methods for au-
tomatic extractive summarization. Traditional
methods learn to score each sentence depen-
dently (Erkan and Radev, 2004; Mihalcea and Ta-
rau, 2004; Wong et al., 2008). Recently neu-
ral network based extractive methods (Cheng and
Lapata, 2016; Nallapati et al., 2017; Feng et al.,
2018; Shi et al., 2018) usually consider extractive
summarization as sequence labeling tasks and aim

to minimize the cross-entropy objective function.
Narayan et al. (2017) utilizes side information
to help sentence classifier while Yasunaga et al.
(2017) computes the salience of each sentence
for selection with graph convolutional networks.
In addition, reinforcement learning based meth-
ods (Wu and Hu, 2018; Narayan et al., 2018; Yao
et al., 2018) have been proposed to directly opti-
mize the evaluation metric ROUGE by combining
cross-entropy loss with rewards from policy gra-
dient reinforcement learning. Dong et al. (2018)
considered extractive summarization as a contex-
tual bandit and it performs well especially when
good summary sentences appear late in the source
document. Recently, Nallapati et al. (2017); Chen
and Bansal (2018); Hsu et al. (2018) propose uni-
fied models and combine the advantages of both
extractive and abstractive methods.

Human Reading-inspired Strategy in NLP
Recently, several pioneer researches began to
study how to adapt human reading cognition pro-
cess, usually including pre-reading, reading and
post-reading (Avery and Graves, 1997; Saricoban,
2002; Toprak and Almacıoğlu, 2009; Pressley and
Afflerbach, 2012), into various NLP-related ap-
plications. For example, Li et al. (2018) solved
document-based question answering and by simu-
lating human being’s reading strategy. Yang et al.
(2019) applied it for abstractive summarization,
Zheng et al. (2019) simulated human behavior for
reading comprehension, and Lei et al. (2019) uti-
lized human-like semantic cognition for aspect-
level sentiment classification. In this paper, we at-
tempt to perform extractive summarization under
the inspiration of human reading recognition.

6 Conclusion

Inspired by the reading cognition of human be-
ings, we propose HER, a two-stage method, to
mimic how people extract summaries. The whole
learning process is formulated as a contextual
bandit trained with policy gradient reinforcement
learning. In rough reading, two neural networks
are taken to encode coarse-grained information. In
careful reading, repeatedly reading are conducted
to select fine-grained sentences as summary. Ex-
periments on two real-world datasets demonstrate
that our proposed model can significantly out-
perform the state-of-the-art extractive methods on
summary quality, coverage and non-redundancy.
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