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Supplemental Material: Learning Scalar Adjective Intensity from
Paraphrases
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1 Constructing a Graph of Adjectival
Paraphrases

Here we present further detail on the process of
constructing JJGRAPH for reproducibility.

1.1 Dissecting Paraphrase Pairs

Building a graph to represent paraphrase pairs re-
quires identification of paraphrases with the form
(RB JJu ↔ JJv) in PPDB-XXL. Paraphrases in
PPDB consist of phrase pairs, where each phrase
can be one or more words long. Each pair is la-
beled with a syntactic part of speech; for this work
we consider only adjectival phrase (ADJP) para-
phrases.

Given a paraphrase pair, we denote as P1 the
phrase with longer token length, and P2 the shorter
phrase. We assume that P2 consists of a single
adjective, and P1 consists of an adjective modi-
fied by an adverb. More specifically, within P1 of
length n, we identify the adjective as the last to-
ken, and the adverbial modifier the concatenated
tokens from the first to (n − 1)th token. For the
purposes of this study, phrases where the adverb
meets one of the following criteria are ignored:
longer than 4 tokens; consists of a single charac-
ter; consists of the word not; ends with one of the
tokens about, and, in, or, the, or to; or contains
digits.

1.2 Bootstrapping Intensifying Adverbs

Recall that building JJGRAPH requires a set of in-
tensifying adverbs in order to select paraphrases
of the form (RB JJu ↔ JJv) for inclusion in the
graph. We used an iterative bootstrapping process
to identify intensifying adverbs as outlined in Sec-
tion 3.1 of the paper.

The process begins with a small seed set
of adjective pairs with a known intensity re-
lationship. For the seeds, we identified ad-

jectival phrase paraphrases (P1,P2) in PPDB
where the adjective in P1 is in its base form
(e.g., hard), and P2 is either the superlative or
comparative form of the same adjective (e.g.,
harder). Such pairs were identified by lemmatiz-
ing with NLTK’s WordNetLemmatizer (Loper
and Bird (2002)).

By definition, the base form of an adjective is
less semantically intense than both its compara-
tive and superlative forms (e.g., hard < harder <
hardest). Thus, the adverb that precedes the base
form of the adjective in P1 is presumed to be an
intensifying adverb. We add all adverbs identified
in Round 1 of the process to an initial adverb list,
R1.

Next, we found additional paraphrases where
the adverb in P1 appears in R1, but the adjectives
in P1 and P2 could be anything. For example,
where in Round 1 we identified very and pretty
as intensifying adverbs, we found in Round 2 that
pleasant and delightful and that simple and plain
were also related by very and pretty, respectively.
That is, pleasant < delightful and simple < plain.

Finally, in Round 3, we identified an additional
set of intensifying adverbs by finding paraphrases
with the new adjective pairs identified in Round
2. For example, in Round 2 we found the pat-
terns [adverb] pleasant ↔ delightful and [ad-
verb] simple↔ plain, so in Round 3 we found all
other paraphrases that fit those patterns (e.g., more
pleasant↔ delightful, quite simple↔ plain). The
adverbs in these phrases (e.g., more, quite) are in-
tensifying. We add all such adverbs identified in
Round 3 to an adverb set R3, and take as our final
set of intensifying adverbs R = R1 ∪R3.

In total, we identified 610 intensifying adverbs
using this process. We also carried out a paral-
lel process to identify de-intensifying adverbs, but
found that the list of intensifiers was larger, and
that the list of de-intensifying adverbs overlapped
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heavily with the list of intensifying adverbs. Thus
we focused primarily on the intensifying adverbs
for creating JJGRAPH.

Finally, JJGRAPH is formed by extracting all
adjectival phrase paraphrases in PPDB of the form
(RB JJu ↔ JJv), where the adverb belongs to the
set of intensifiers. Each paraphrase is then repre-
sented by two nodes (JJu, JJv) and the directed
adverb edge with label RB from JJu to JJv.

2 Dataset Generation

In this paper we utilized two previously-released
datasets of gold standard adjective intensity rank-
ings (de Melo and Bansal, 2013; Wilkinson and
Oates, 2016), and also generated a third, new set
of gold standard adjective scales through crowd-
sourcing. This section details the process of mod-
ifying the Wilkinson dataset from full- to half-
scales for use in this study, and the process of cre-
ating the new crowdsourced dataset.

2.1 Adapting the Wilkinson Dataset

The Wilkinson dataset (Wilkinson and Oates,
2016) as published provides 12 full adjective
scales between polar opposites, e.g. (ancient, old,
fresh, new). We manually subdivided each scale
into half scales for compatibility with the other
datasets in this study, producing 21 half scales to-
tal. The procedure for dividing a full- into a half-
scale was as follows:

1. If the full scale contains two central ad-
jectives where the polarity shifts from neg-
ative to positive, sub-divide the scale be-
tween them (e.g. divide the scale (simple,
easy, hard, difficult) between central adjec-
tives easy and hard).

2. Otherwise, if the full scale contains a central
neutral adjective, subdivide the full scale into
halves with the neutral adjective belonging to
both half scales (e.g. divide (freezing, cold,
warm, hot) into (freezing, cold, warm) and
(warm, hot)).

3. If any of the resulting half scales has length
1, delete it.

Table 1 enumerates the half-scales we generated
from the full Wilkinson dataset.

hideous ugly || pretty beautiful gorgeous
dark dim || light bright

same alike similar || different
simple easy || hard difficult

parched arid dry || damp moist wet
|| few some several many

horrible terrible awful bad || good great wonderful awesome
freezing cold warm || warm hot

ancient old || fresh new
slow || quick fast speedy

miniscule tiny small || big large huge enormous gigantic
idiotic stupid dumb || smart intelligent

Table 1: Converting the 12 Wilkinson full scales to 21
half scales. The || symbol denotes the location where
full scales are split into half scales. Strike-through text
indicates a half-scale was deleted due to having a single
adjective.

2.2 Building the Crowd Dataset
In order to maximize coverage of our JJGRAPH

vocabulary, we also generated a new dataset of ad-
jective intensity half-scales. Our general approach
was, first, to compile clusters of adjectives de-
scribing a single attribute, and second, to rank ad-
jectives within each cluster by their intensity.

2.2.1 Generating Adjective Sets
We generated clusters of adjectives modifying a
shared attribute by partitioning sets of related ad-
jectives associated with a single target word in JJ-
GRAPH. For example, given the target adjective
hot, we might generate the following clusters from
the set of associated words warm, heated, boiling,
attractive, nice-looking, new, and popular:

c1 = {warm, heated, boiling}
c2 = {attractive, nice-looking}
c3 = {new, popular}

Each cluster represents a semantic sense of the tar-
get adjective, and thus the adjectives within a clus-
ter can be ordered along a single scale of increas-
ing intensity. Clusters do not need to be disjoint,
as some adjectives have multiple senses.

Partitioning the sets was accomplished with the
aid of crowd workers on Amazon Mechanical
Turk (MTurk) in two stages. Here we describe the
process.

We began by selecting target adjectives with
high centrality in JJGRAPH around which to cre-
ate gold standard clusters. An adjective has
“high centrality” if it is among the 200 most cen-
tral nodes according to two of three centrality
measurements – betweenness centrality, closeness
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centrality, and degree centrality. With this crite-
rion, we selected 145 target adjectives from JJ-
GRAPH around which adjective sets were gener-
ated.

For each target adjective, we then generated a
candidate set of related adjectives to pass to our
first MTurk task, which asked workers to remove
unrelated adjectives from the candidate sets. We
compile an initial candidate set for each of the 145
target adjectives by collecting the first 20 words
encountered in a breadth-first search starting at the
adjective in JJGRAPH.

Our first MTurk task aimed to remove unrelated
adjectives from the 145 candidate sets (see Fig-
ure 1). We presented workers with pairs of adjec-
tives, one being the target adjective and the other a
word from that target’s candidate set. Three Turk-
ers assessed each pair of adjectives. If a majority
of Turkers declared that a pair of adjectives did
not describe the same attribute, then the candidate
word was removed from that target’s set.

Figure 1: First MTurk HIT for constructing gold stan-
dard adjective clusters. Each question consists of a
target adjective (left) and a cluster candidate adjective
(right).

Once we had a clean set of related adjectives for
each target, our second task asked workers to par-
tition the related words (Figure 2). Between 2 and
10 Turkers constructed a clustering for each target
adjective. Once a predefined level of agreement
was reached among Turkers for a target adjective’s
clusters, the clusters were deemed “gold.”

In total, we constructed gold standard cluster-
ings for 145 adjectives. Each candidate set was
partitioned into an average of 3.26 clusters.

2.2.2 Ranking Adjectives in a Cluster
Given a clustering of related adjectives for each
of the 145 target words, our next step was to ask
MTurk workers to order adjectives within a single
cluster by intensity.

We completed the ordering in a pairwise fash-
ion. For each adjective cluster, we asked 3 MTurk
workers to evaluate – for each pair of adjectives
(ju, jv), whether ju was less, equally, or more in-
tense than jv. The inter-annotator agreement on
this task (Cohen’s kappa) was κ = 0.53, indicat-
ing moderate agreement.

Finally, we filtered each cluster to include only
adjectives with a unanimous, consistent global
ranking. More specifically, if a cluster has ad-
jectives ju, jv, and jw, and workers unanimously
agree that ju < jv and jv < jw, then workers
must also unanimously agree that ju < jw for the
ranking to be consistent. After this final step, our
dataset consisted of 79 remaining clusters having
from 2 to 8 ranked adjectives each (mean 3.18 ad-
jectives per cluster).

3 Implementation Details for Global
Ranking Model

We adopt the mixed-integer linear programming
(MILP) approach of de Melo and Bansal (2013)
for generating a global intensity ranking. This
model takes a set of adjectives A = {a1, . . . , an}
and directed, pairwise adjective intensity scores
score(ai, aj) as input, and assigns each adjective
ai a place along a linear scale xi ∈ [0, 1]. The
adjectives’ assigned values along the scale define
the global ordering. Because the predicted weights
used as input may be inconsistent, containing cy-
cles, the model must resolve these by choosing the
globally optimal solution.

Recall that all pairwise scoring metrics in this
study produce a positive score for adjective pair
(ju, jv) when it is likely that ju< jv, and a
negative score when ju> jv. Consequently, the
MILP approach should result in xu < xv when
score(ju, jv) is positive, and xu > xv otherwise.
This goal is achieved by maximizing the objective
function:

∑
u,v

sign(xv − xu) · score(ju, jv) (1)

de Melo and Bansal (2013) propose the follow-
ing MILP formulation for maximizing this objec-
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Figure 2: Second MTurk HIT for constructing gold standard adjective clusters.

tive:

max
u,v

∑
u,v

(wuv − suv)·score(ju, jv)

s.t. duv = xv − xu ∀u, v ∈ N
duv − wuvC ≤ 0 ∀u, v ∈ N

duv + (1− wuv)C > 0 ∀u, v ∈ N
duv + suvC ≥ 0 ∀u, v ∈ N

duv − (1− suv)C < 0 ∀u, v ∈ N
xu ∈ [0, 1] ∀u ∈ N

wuv ∈ {0, 1} ∀u, v ∈ N
suv ∈ {0, 1} ∀u, v ∈ N

(2)
The variable duv is a difference variable that cap-
tures the difference between xv and xu. The con-
stantC is an arbitrarily large number that is at least∑

u,v |score(ju, jv)|. The variables wuv and suv
are binary indicators that correspond to a weak-
strong or strong-weak relationship between ju and
jv respectively; the objective encourages wuv = 1
when score(ju, jv) > 0, and suv = 1 when
score(ju, jv) < 0. While de Melo and Bansal
(2013) also propose an additional term in the ob-
jective that incorporates synonymy information,
we do not implement this part of the model.

4 Full Results

Only the best results for combined scoring meth-
ods were given in the main body of the paper. Here

we provide the full results for all combinations at-
tempted on both experiments.
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Method %OOV Acc. P R F

scoresocal+pat+pp 0.06 0.642 0.684 0.683 0.684
scoresocal+pp+pat 0.06 0.642 0.678 0.676 0.677
scoresocal+pp 0.09 0.634 0.690 0.663 0.676
scoresocal+pat 0.07 0.634 0.680 0.670 0.675
deMarneffe (2010) 0.02 0.610 0.597 0.594 0.596
scoresocal 0.26 0.504 0.710 0.481 0.574
scorepp+pat 0.06 0.504 0.559 0.547 0.553
scorepp+pat+socal 0.06 0.504 0.559 0.547 0.553
scorepp+socal+pat 0.06 0.504 0.559 0.547 0.553
scorepp+socal 0.09 0.496 0.568 0.533 0.550
scorepp 0.09 0.496 0.568 0.533 0.550
scorepat+pp 0.06 0.423 0.532 0.517 0.524
scorepat+socal+pp 0.06 0.423 0.532 0.517 0.524
scorepat+pp+socal 0.06 0.423 0.532 0.517 0.524
scorepat+socal 0.07 0.415 0.528 0.504 0.516
scorepat 0.07 0.407 0.524 0.491 0.507
all-“YES” 0.00 0.691 0.346 0.500 0.409

Table 2: Full IQAP Results. Accuracy and macro-averaged precision (P), recall (R), and F1-score (F) over yes
and no responses on 123 question-answer pairs. The percent of pairs having one or both adjectives out of the score
vocabulary is listed as %OOV. Rows are sorted by descending F1-score.
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Score Accuracy
(before ranking)

Global Ranking Results

Test Set Score Type Coverage Pairwise
Acc.

Pairwise
Acc.

Avg. τb ρ

deMelo

scorepat 0.480 0.844 0.650 0.633 0.583
scorepp 0.325 0.458 0.307 0.071 0.09
scoresocal 0.277 0.546 0.246 0.110 0.019
scorepat+pp 0.623 0.742 0.619 0.543 0.511
scoresocal+pp 0.478 0.523 0.380 0.162 0.106
scorepat+socal 0.609 0.757 0.653 0.609 0.533
scorepat+pp+socal 0.698 0.718 0.637 0.537 0.463
scorepat+socal+pp 0.698 0.722 0.644 0.564 0.482
scorepp+socal+pat 0.698 0.635 0.579 0.393 0.327
scorepp+pat+socal 0.698 0.661 0.599 0.437 0.372
scoresocal+pp+pat 0.698 0.647 0.589 0.430 0.341
scoresocal+pat+pp 0.698 0.680 0.613 0.496 0.395

Crowd

scorepat 0.112 0.784 0.321 0.203 0.221
scorepp 0.738 0.676 0.597 0.437 0.405
scoresocal 0.348 0.757 0.421 0.342 0.293
scorepat+pp 0.747 0.696 0.627 0.481 0.432
scoresocal+pp 0.812 0.687 0.621 0.470 0.465
scorepat+socal 0.412 0.750 0.476 0.373 0.298
scorepat+pp+socal 0.821 0.686 0.630 0.462 0.440
scorepat+socal+pp 0.821 0.686 0.624 0.465 0.472
scorepp+socal+pat 0.821 0.670 0.630 0.456 0.435
scorepp+pat+socal 0.821 0.670 0.630 0.456 0.435
scoresocal+pp+pat 0.821 0.690 0.633 0.481 0.480
scoresocal+pat+pp 0.821 0.694 0.639 0.495 0.480

Wilkinson

scorepat 0.443 0.852 0.475 0.441 0.435
scorepp 0.795 0.753 0.639 0.419 0.450
scoresocal 0.311 0.895 0.312 0.317 0.422
scorepat+pp 0.885 0.833 0.738 0.605 0.564
scoresocal+pp 0.795 0.773 0.672 0.484 0.565
scorepat+socal 0.639 0.846 0.59 0.503 0.506
scorepat+pp+socal 0.885 0.833 0.738 0.605 0.564
scorepat+socal+pp 0.885 0.833 0.754 0.638 0.600
scorepp+socal+pat 0.885 0.750 0.672 0.426 0.414
scorepp+pat+socal 0.885 0.750 0.672 0.426 0.414
scoresocal+pp+pat 0.885 0.769 0.705 0.492 0.504
scoresocal+pat+pp 0.885 0.833 0.754 0.638 0.611

Table 3: Full Global Ranking Results. Pairwise relation prediction and global ranking results for each score type
in isolation, and for all combinations of 2 and 3 score types attempted on each dataset.


