
Disambiguated skip-gram model
Appendix

A Training details

We trained disambiguated skip-gram models on the Westbury Lab Wikipedia cor-
pus (Shaoul and Westbury, 2010). We used standard text preprocessing, i.e., con-
verted all words to lower case, removed stop words and converted all numbers to
a unique token. We then removed all words with less than 100 occurrences in the
text. This gives a vocabulary with approximately 130 thousand words. We define
the context of a word w as the 5 words preceding w and the 5 words following
w in X . However, we do not allow the context to cross sentence boundaries, but
instead pad the sentences with a unique token.

We optimize our models using mini-batch stochastic gradient descend with
momentum. All models are trained with a mini-batch size of 128 examples. We
perform three epochs of training, with a learning rate of 0.1, 0.05 and 0.01, respec-
tively. During the first epoch we linearly decrease the temperature τ (Eq. 7) from
1.0 to 0.5. In the subsequent epochs the temperature is kept at τ = 0.5.

To facilitate training of disambiguated skip-gram over large vocabularies, we
approximate the log-likelihood gradient in Eq. 10 with importance sampling (Cho
et al., 2015). Two sets of parameters in disambiguated skip-gram perform simi-
lar functions: the output embedding vectors ud represent the context words in the
word prediction model and the context embedding vectors rd represent the context
words in the sense disambiguation model. In practice, we tie the context embed-
ding vectors rd to the output embedding vectors ud. We found that this simplifies
training of our models. Finally, to speed up the fitting of embeddings for rare
words, we initially tie sense disambiguation vectors qds between all words d ∈ D.
In order to obtain a balanced initial distribution of senses we use a small negative
entropy cost (γ = −0.1) in this phase. After the initialization, we untie sense
disambiguation vectors and let each word fit its own disambiguation model.

B Visualization of sense embedding vectors

In Fig. 1 we visualize nearest neighbours of sense embedding vectors of two am-
biguous words. Note that the sense representations learned by disambiguated skip-
gram are well separated in the embedding space.

1



mouse_0 mickey_1

rabbit_0

goofy_0cat_0
porky_0

mouse_1

cursor_1

joystick_1
trackball_1

touchpad_1

touchscreen_1

mouse_2
rodent_1

vole_1
shrew_1

pygmy_1
rat_1

(a) mouse

fox_0

nbc_2

cbs_1

network_0

syndication_0

espn_1

fox_1

badger_1

wolf_1
coyote_1

weasel_1

marten_1

fox_2

miller_2
allen_2

plummer_2

crowe_2

buck_2

(b) fox

Figure 1: Two-dimensional projections of nearest neighbors of sense embedding
vectors learned by disambiguated skip-gram for two ambiguous words. We used
principal component analysis to project the embedding vectors onto a plane.

C Word-similarity experiments

For completeness, we also evaluated disambiguated skip-gram in a contextual word
similarity task. To this end, we carried out experiments on the Word Similarity in
Context (SCWS) dataset (Huang et al., 2012). The dataset consist of 2,003 word
pairs. Each word in a pair comes with a context in which it occurred and each word
pair comes with a human similarity rating. The goal of this task is to estimate the
word similarity given the word pair and the corresponding contexts.

For this evaluation we trained a 300-dimensional disambiguated skip-gram
model with three sense embedding vectors allocated to each word and no entropy
cost. Using the SCWS contexts we then inferred senses for all words in the test
pairs. Finally, for each word pair we calculated the cosine similarity between the
inferred word sense embedding vectors. For the performance metric in this ex-
periment we use the Spearman’s rank correlation coefficient between the human
word similarity ratings and the word similarities estimated from multi-sense word
embeddings. In previous works this metric is called MaxSimC. Results for disam-
biguated skip-gram and several baseline algorithms are reported in Tab. 1. Results
for all baseline algorithms are taken from (Bartunov et al., 2016).

Disambiguated skip-gram achieves second best result among multi-sense word
embedding methods, outperforming AdaGram, MSSG and NP-MSSG. That said,
as pointed out by Bartunov et al. (2016), the task is dominated by a well trained
single-sense skip-gram model. Note that the performance of multi-sense models
under the MaxSimC metric depends on both the accuracy of the sense disambigua-
tion, which is a difficult task, and the quality of the learned sense vectors. Skip-
gram, on the other hand, is directly optimizing the average case, i.e. the semantic
similarity of word vectors irrespective of their senses. To illustrate this point, we
took the sense embedding vectors learned by disambiguated skip-gram and calcu-
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Model MaxSimC [%]

Skip-gram 65.2
MSSG 57.3

NP-MSSG 59.8
MPSG 63.6

AdaGram 53.8
Disambiguated

62.0
skip-gram

Table 1: Spearman’s rank correlation coefficients between the human word similar-
ity ratings and the word similarities estimated from multi-sense word embeddings.
Results for all models except disambiguated skip-gram are taken from (Bartunov
et al., 2016).

lated mean vector for each word. These mean vectors outperform vanilla skip-gram
in the SCWS benchmark, achieving rank correlation coefficient of 67.5. This sug-
gests that the similarity in context task favors single-sense models, and therefore it
may be not the best choice for evaluating multi-sense word embedding methods.
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