
Appendices
A Proof of Proposition 11

Proof. Let’s consider a single-layer QRNN with
2-window convolutions:

ft = � (Vfvt�1 + Wfvt + bf ) ,

ut = (1 � ft) � g
�
Vuvt�1 + Wuvt + bu

�
,

ct = ft � ct�1 + ut.

A similar analysis applies to T-GRUs and T-
LSTMs directly, and it should be straightforward
to generalize the discussion to QRNNs with larger
convolution windows.

Let ⌃ denote the alphabet, and let x =
x1x2 . . . xn 2 ⌃+ be a nonempty input string.
consider a WFSA over the real semiring with
2 |⌃| + 1 states, where q0 is the initial state with
�(q0) = 1; |⌃| of them are final states Q2 =
{q↵}↵2⌃, with ⇢(q↵) = 1, and the remaining |⌃|
states are denoted by Q1 = {p↵}↵2⌃.

The transition weights ⌧ are constructed by

⌧(q0, p↵, ↵) = 1, 8p↵, 2 Q1;

⌧(p↵, p� , �) = 1, 8p↵, p� 2 Q1;

⌧(p↵, q� , �) = µ↵(�), 8p↵ 2 Q1, 8q� 2 Q2;

⌧(q↵, q� , �) = �↵(�), 8q↵, q� 2 Q2.

⌧ = 0 otherwise. Then one dimension of the rec-
curent updates of a 2-window QRNN is recovered
by parameterizing the weight functions as

µxt�1(xt) = [ut]i, �xt�1(xt) = [ft]i. (22)

The recurrent computation of a 2-window QRNN
of hidden size d can then be recovered by collect-
ing d such WFSAs.

B Proof of Proposition 12

Proof. We present the construction of WFSAs for
a single layer n-gram RCNNs of hidden size d.

Let’s assume a given input sequence x 2 ⌃+,
with |x| > n, since otherwise one only needs in-
clude paddings, just as in a RCNN. Consider a
WFSA with n+1 states Q = {qi}ni=0 over the real
semiring. Use q0 as the initial state with �(q0) =
1, and qn as the final state with ⇢(qn) = 1. The
transition weight function is defined by

⌧(qi, qj , ↵) =

8
>>>><

>>>>:

1, i = j = 0,

�(↵), j = i > 0,

µj(↵), j = i + 1,

0, otherwise.

Let z
(j)
t denote the total score of all paths land-

ing in state qj just after consuming xt. Let z
(j)
t =

0, j = 0, . . . , n. By the forward algorithm

z
(0)
t = 1,

z
(j)
t = z

(j)
t�1 �(xt) + z

(j�1)
t�1 µj(xt), j � 1.

Applying similar parametrization to that in §4.2,
z
(n)
t recovers one dimension of the recurrence.

Collecting d such WFSAs we recover the recur-
rence of a single layer n-gram RCNNs, with �t

being a constant, or depending only on xt.

C Proof of Proposition 13

Proof. Closely following the 2-dimensional case
in §4.3, let’s discuss a single layer ISAN of hidden
size d.

Consider a WFSA over the real semiring with
2d states. Let d of them, denoted by Q2 =
{qi}2di=d+1 be the initial states, with �(qi) = 1, i =

1, . . . , d. Denote the other half {qi}di=1 by Q1. De-
fine transition weight ⌧ by:

⌧(qi, qj , ↵) =

8
>>>><

>>>>:

1, i = j, qi 2 Q2,

⌘j(↵), i = j + d,

µj,i(↵), qi, qj 2 Q1,

0, otherwise.

8↵ 2 ⌃.
Using qi 2 Q1 as the final state with ⇢(qi) = 1,

and denote the resulting WFSA by Gi. By Forward
algorithm, Gi recovers the ith dimension of the
single layer ISAN by letting [Wxt ]i,j = µi,j(xt),
and [bxt ]i = ⌘i(xt); the d-dimensional recur-
rent computation is recovered by a set of WFSAs
{Gi}di=1 constructed similarly.

D Compared Models

This section formally describes the models com-
pared in the experiments (§6.1).

RRNN(B). RRNN(B) is derived from B (§4.1).

ft = �
�
Wfvt + bf

�
, (23a)

ut = (1 � ft) � Wuvt, (23b)
ct = ft � ct�1 + ut, (23c)
ot = �

�
Wovt + bo

�
, (23d)

ht = tanh(ot � ct). (23e)



RRNN(B)m+. Also derived from B, but uses the
max-plus semiring (§5.2).

ft = log�
�
Wfvt + bf

�
, (24a)

ut = Wuvt, (24b)
ct = max{ft + ct�1,ut}, (24c)
ot = log�

�
Wovt + bo

�
, (24d)

ht = tanh(ot + ct). (24e)

RRNN(C). RRNN(C) is derived from C (§4.2):

f (j)t = �
�
W(j)

f vt + b(j)
f

�
, j = 1, 2, (25a)

u(j)
t = (1 � f (j)t ) � W(j)

u vt, j = 1, 2, (25b)

c(1)t = c(1)t�1 � f (1)t + u(1)
t , (25c)

c(2)t = c(2)t�1 � f (2)t + c(1)t�1 � u(2)
t , (25d)

ot = �
�
Wovt + bo

�
, (25e)

ht = tanh(ot � ct). (25f)

RRNN(F). Derived from F (§5.1).

f (j)t = �
�
W(j)

f vt + b(j)
f

�
, j = 1, 2, (26a)

u(j)
t = (1 � f (j)t ) � W(j)

u vt, j = 1, 2, (26b)

p(j) = �(b(j)
p ), j = 1, 2, (26c)

r = �(br), (26d)

c(1)t = c(1)t�1 � f (1)t + u(1)
t , (26e)

c(2)t = c(2)t�1 � f (2)t + (c(1)t�1 + r) � u(2)
t , (26f)

ct = p(1) � c(1)t + p(2) � c(2)t (26g)
ot = �

�
Wovt + bo

�
, (26h)

ht = tanh(ot � ct). (26i)

The output gates (Equations 23d, 24d, 25e, and
26h) are optional. They are only used in language
modeling experiments, where we empirically find
that they improve performance.

E Experimental Setup

E.1 Implementation Details
Our implementation is based on Lei et al.
(2017b)11 and Peng et al. (2018),12 using Py-
Torch.13

E.2 Language Modeling
For hyperparameters, we do not deviate much
from the language modeling experiments in Lei
et al. (2017b). We change the hidden sizes for all

11
https://github.com/taolei87/sru

12
https://github.com/Noahs-ARK/SPIGOT

13
https://pytorch.org/

Type Values

Hidden size [100, 300]

Vertical dropout [0.0, 0.5]

Recurrent dropout [0.0, 0.5]

Embedding dropout [0.0, 0.5]

Learning Rate [10�2
, 10�4]

`2 regularization [10�5
, 10�7]

Gradient Clipping [1.0, 5.0]

Table 6: The hyperparameters explored using ran-
dom search algorithm in the text classification ex-
periments.

compared models based on the trainable param-
eter budget, and adjust the dropout probabilities
accordingly to keep the number of remaining hid-
den units is roughly the same in expectation. Be-
sides, we observe that RRNN(C) and RRNN(F) fail
to converge when optimized with the SGD algo-
rithm using 1.0 initial learning rate. And thus we
use 0.5 for both models. Other hyperparameters
are kept the same as Lei et al. (2017b).

E.3 Text classification
We train our models using Adam (Kingma and Ba,
2015) with a batch size of 16 (for Amazon) or
64 (for the smaller datasets). Initial learning rate
and `2 regularization are hyperparameters. We use
300-dimensional GloVe 840B embeddings (Pen-
nington et al., 2014) normalized to unit length
and fixed, replacing unknown words with a spe-
cial UNK token. Two layer RNNs are used in all
cases. For regularization, we use three types of
dropout: a recurrent variational dropout, vertical
dropout and a dropout on the embedding layer.

We tune the hyperparameters of our model on
the development set by running 20 epochs of ran-
dom search. We then take the best development
configuration, and train five models with it using
different random seeds. We report the average test
results. The hyperparameters values explored are
summarized in Table 6. We train all models for
500 epochs, stopping early if development accu-
racy does not improve for 30 epochs. During train-
ing, we halve the learning rate if development ac-
curacy does not improve for 10 epochs.

https://github.com/taolei87/sru
https://github.com/Noahs-ARK/SPIGOT
https://pytorch.org/

