Incremental Skip-gram Model with Negative Sampling Nobuhiro Kaji and Hayato Kobayashi **YAHOO** IAPAN Yahoo Japan Corporation

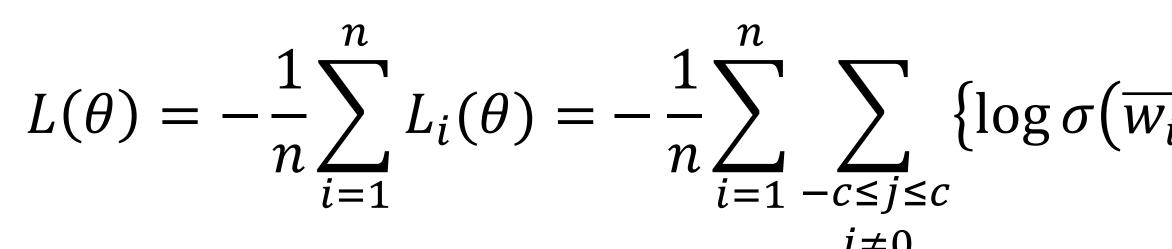
Summary of This Study -

- incremental model update when new training data is provided

Existing Algorithm for SGNS Training: Two-pass Algorithm

Training data (sequence of words): $W_1, W_2,$

Loss function:



Noise distribution:

 $q(v) \propto (\text{number of word})$

Single-pass Incremental Algorithms

Incremental SGNS

for $i = 1, 2, \dots, n$	for <i>t</i> = 1
# Update word frequencies	# Upd
$f(w_i) \leftarrow f(w_i) + 1$	for <i>i</i> f
# Compute noise distribution $q(w) \propto f(w)^{\alpha}$ for all w	$\begin{array}{c} \# \operatorname{Con} \\ q(w) \end{array}$
# Perform SGD update	# Per
$\theta \leftarrow \theta - \tau \frac{\partial L_i(\theta)}{\partial \theta}$	for i

Mini-batch SGNS

• Existing methods of word embedding (e.g., skip-gram model and GloVe) cannot perform • We propose an incremental extension of skip-gram model with negative sampling (SGNS) and demonstrate its effectiveness from both theoretical and empirical perspectives

\cdots, W_i, \cdots, W_n	$\begin{array}{c c} \text{# Count w} \\ \text{for } i = 1 \\ f(w) \end{array}$
$\vec{w_i} \cdot \vec{w}_{i+j} + kE_{v \sim q(v)} [\log \sigma(-\vec{w_i} \cdot \vec{v})] $	$\begin{array}{l} \# \operatorname{Comput} \\ q(w) \propto f \end{array}$
$(\vec{v}_i \cdot \vec{w}_{i+j}) + kE_{v \sim q(v)}[\log \sigma(-\vec{w}_i \cdot \vec{v})]\}$ d <i>v</i> in the training data) ^{α}	# Perforn $for i = 1$
	θ

1, 2, …, *T* date word frequencies $\in M_t$ $f(w_i) \leftarrow f(w_i) + 1$ mpute noise distribution) $\propto f(w)^{\alpha}$ for all w rform SGD update

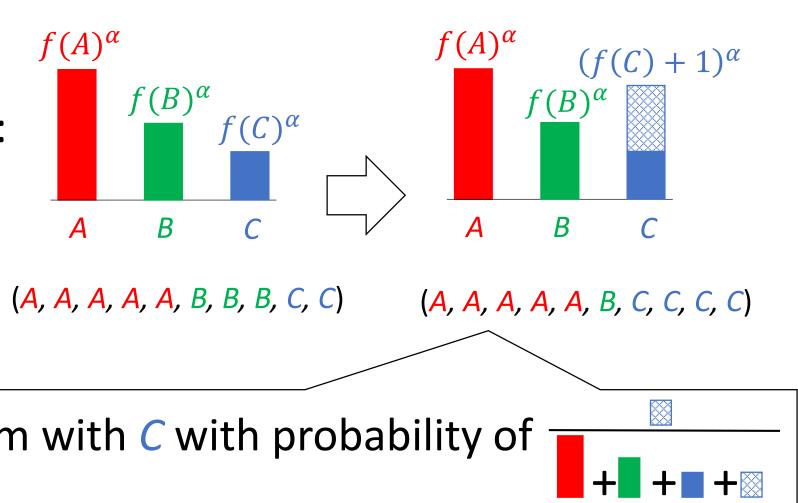
 $\in M_t$ $\tau \frac{\partial L_i(\theta)}{\partial L_i(\theta)}$

Efficient Implementation

Use Misra-Gries algorithm (Misra and Gries 82) to maintain dynamic vocabulary

Use weighted reserver sampling (Vitter, 85) to update unigram table for sampling from noise distribution

noise distribution:



unigram table:

overwrite each item with C with probability of

word frequencies $1, 2, \cdots, n$ $w_i) \leftarrow f(w_i) + 1$

ite noise distribution $f(w)^{\alpha}$ for all w

m SGD update $(-, 2, \cdots, n)$ $\leftarrow \theta - \tau \frac{\partial L_i(\theta)}{\partial \theta}$

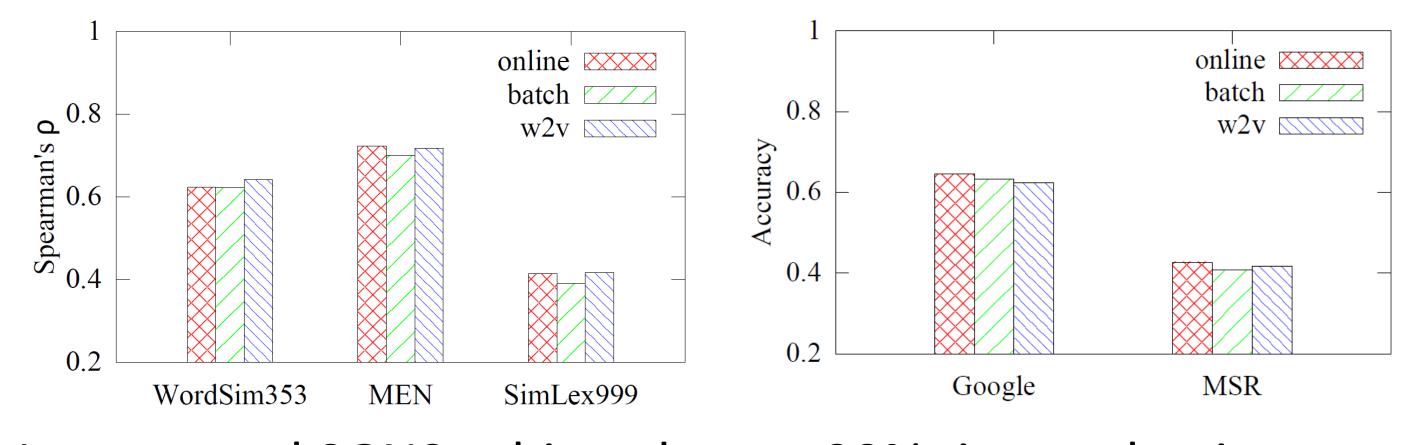
Theoretical Analysis

Lemma. Let $L(\theta)$ be the loss function of SGNS. Let also $\hat{\theta}$ be the optimal solution of incremental SGNS. Then,

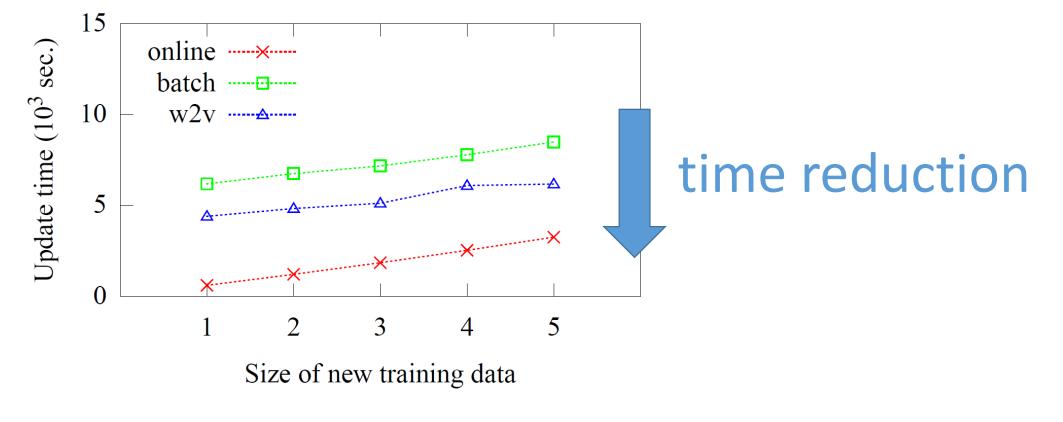
Theorem. $L(\hat{\theta})$ converges in probability to $\min_{\theta} L(\theta)$ in the limit of $n \to \infty$: $\forall \varepsilon > 0, \lim_{n \to \infty} \Pr\left(\left|L(\hat{\theta}) - \min_{\Delta} L(\theta)\right| > \varepsilon\right) = 0.$

Experimental Results

Word embeddings learned by incremental SGNS performed word similarity task (left) and word analogy task (right) comparatively well with the original SGNS



Incremental SGNS achieved up to 90% time reduction when updating old model on additional training data



- \bullet
- of the new incremental algorithm

- $\lim_{n\to\infty} \mathbb{E}\left[L(\hat{\theta}) \min_{\theta} L(\theta)\right] = 0,$ $\lim_{n\to\infty} V\left[L(\hat{\theta}) - \min_{\theta} L(\theta)\right] = 0.$

Conclusion

SGNS can be trained in a fully online fashion Both theory and experiments support the effectiveness