A Proof of Proposition 1

We provide here a detailed proof of Proposition 1.

A. 1 Forward Propagation

The optimization problem is

$$
\begin{aligned}
\operatorname{csoftmax}(\boldsymbol{z}, \boldsymbol{u})=\operatorname{argmin} & -H(\boldsymbol{\alpha})-\boldsymbol{z}^{\top} \boldsymbol{\alpha} \\
\text { s.t. } & \left\{\begin{array}{l}
\mathbf{1}^{\top} \boldsymbol{\alpha}=1 \\
\mathbf{0} \leq \boldsymbol{\alpha} \leq \boldsymbol{u}
\end{array}\right.
\end{aligned}
$$

The Lagrangian function is:

$$
\begin{align*}
\mathcal{L}(\boldsymbol{\alpha}, \lambda, \boldsymbol{\mu}, \boldsymbol{\nu})= & -H(\boldsymbol{\alpha})-\boldsymbol{z}^{\top} \boldsymbol{\alpha}+\lambda\left(\mathbf{1}^{\top} \boldsymbol{\alpha}-1\right) \\
& -\boldsymbol{\mu}^{\top} \boldsymbol{\alpha}+\boldsymbol{\nu}^{\top}(\boldsymbol{\alpha}-\boldsymbol{u}) . \tag{14}
\end{align*}
$$

To obtain the solution, we invoke the Karush-Kuhn-Tucker conditions. From the stationarity condition, we have $\mathbf{0}=\log (\boldsymbol{\alpha})+\mathbf{1}-\boldsymbol{z}+\lambda \mathbf{1}-\boldsymbol{\mu}+\boldsymbol{\nu}$, which due to the primal feasibility condition implies that the solution is of the form:

$$
\begin{equation*}
\boldsymbol{\alpha}=\exp (\boldsymbol{z}+\boldsymbol{\mu}-\boldsymbol{\nu}) / Z \tag{15}
\end{equation*}
$$

where Z is a normalization constant. From the complementarity slackness condition, we have that $0<$ $\alpha_{i}<u_{i}$ implies that $\mu_{i}=\nu_{i}=0$ and therefore $\alpha_{i}=\exp \left(z_{i}\right) / Z$. On the other hand, $\nu_{i}>0$ implies $\alpha_{i}=u_{i}$. Hence the solution can be written as $\alpha_{i}=\min \left\{\exp \left(z_{i}\right) / Z, u_{i}\right\}$, where Z is determined such that the distribution normalizes:

$$
\begin{equation*}
Z=\frac{\sum_{i \in \mathcal{A}} \exp \left(z_{i}\right)}{1-\sum_{i \notin \mathcal{A}} u_{i}} \tag{16}
\end{equation*}
$$

with $\mathcal{A}=\left\{i \in[L] \mid \alpha_{i}<u_{i}\right\}$.

A. 2 Gradient Backpropagation

We now turn to the problem of backpropagating the gradients through the constrained softmax transformation. For that, we need to compute its Jacobian matrix, i.e., the derivatives $\frac{\partial \alpha_{i}}{\partial z_{j}}$ and $\frac{\partial \alpha_{i}}{\partial u_{j}}$ for $i, j \in[L]$. Let us first express $\boldsymbol{\alpha}$ as

$$
\alpha_{i}= \begin{cases}\frac{\exp \left(z_{i}\right)(1-s)}{\sum_{j \in \mathcal{A}} \exp \left(z_{j}\right)}, & i \in \mathcal{A} \tag{17}\\ u_{i}, & i \notin \mathcal{A}\end{cases}
$$

where $s=\sum_{j \notin \mathcal{A}} u_{j}$. Note that we have $\partial s / \partial z_{j}=0, \forall j$, and $\partial s / \partial u_{j}=\mathbb{1}(j \notin \mathcal{A})$. To compute the entries of the Jacobian matrix, we need to consider several cases.

Case 1: $i \in \mathcal{A}$. In this case, the evaluation of Eq. 17 goes through the first branch. Let us first compute the derivative with respect to u_{j}. Two things can happen: if $j \in \mathcal{A}$, then s does not depend on u_{j}, hence $\frac{\partial \alpha_{i}}{\partial u_{j}}=0$. Else, if $j \notin \mathcal{A}$, we have

$$
\frac{\partial \alpha_{i}}{\partial u_{j}}=\frac{-\exp \left(z_{i}\right) \frac{\partial s}{\partial u_{j}}}{\sum_{k \in \mathcal{A}} \exp \left(z_{k}\right)}=-\alpha_{i} /(1-s)
$$

Now let us compute the derivative with respect to z_{j}. Three things can happen: if $j \in \mathcal{A}$ and $i \neq j$, we have

$$
\begin{align*}
\frac{\partial \alpha_{i}}{\partial z_{j}} & =\frac{-\exp \left(z_{i}\right) \exp \left(z_{j}\right)(1-s)}{\left(\sum_{k \in \mathcal{A}} \exp \left(z_{k}\right)\right)^{2}} \\
& =-\alpha_{i} \alpha_{j} /(1-s) \tag{18}
\end{align*}
$$

If $j \in \mathcal{A}$ and $i=j$, we have

$$
\begin{align*}
\frac{\partial \alpha_{i}}{\partial z_{i}}= & (1-s) \times \\
& \frac{\exp \left(z_{i}\right) \sum_{k \in \mathcal{A}} \exp \left(z_{k}\right)-\exp \left(z_{i}\right)^{2}}{\left(\sum_{k \in \mathcal{A}} \exp \left(z_{k}\right)\right)^{2}} \\
= & \alpha_{i}-\alpha_{i}^{2} /(1-s) \tag{19}
\end{align*}
$$

Finally, if $j \notin \mathcal{A}$, we have $\frac{\partial \alpha_{i}}{\partial z_{j}}=0$.
Case 2: $i \notin \mathcal{A}$. In this case, the evaluation of Eq. 17 goes through the second branch, which means that $\frac{\partial \alpha_{i}}{\partial z_{j}}=0$, always. Let us now compute the derivative with respect to u_{j}. This derivative is always zero unless $i=j$, in which case $\frac{\partial \alpha_{i}}{\partial u_{j}}=1$.

To sum up, we have:

$$
\frac{\partial \alpha_{i}}{\partial z_{j}}= \begin{cases}\mathbb{1}(i=j) \alpha_{i}-\frac{\alpha_{i} \alpha_{j}}{1-s}, & \text { if } i, j \in \mathcal{A} \tag{20}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\frac{\partial \alpha_{i}}{\partial u_{j}}= \begin{cases}-\frac{\alpha_{i}}{1-s}, & \text { if } i \in \mathcal{A}, j \notin \mathcal{A} \tag{21}\\ 1, & \text { if } i, j \notin \mathcal{A}, i=j \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, we obtain:

$$
\begin{align*}
\mathrm{d} z_{j} & =\sum_{i} \frac{\partial \alpha_{i}}{\partial z_{j}} \mathrm{~d} \alpha_{i} \\
& =\mathbb{1}(j \in \mathcal{A})\left(\alpha_{j} \mathrm{~d} \alpha_{j}-\frac{\alpha_{j} \sum_{i \in \mathcal{A}} \alpha_{i} \mathrm{~d} \alpha_{i}}{1-s}\right) \\
& =\mathbb{1}(j \in \mathcal{A}) \alpha_{j}\left(\mathrm{~d} \alpha_{j}-m\right) \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{d} u_{j} & =\sum_{i} \frac{\partial \alpha_{i}}{\partial u_{j}} \mathrm{~d} \alpha_{i} \\
& =\mathbb{1}(j \notin \mathcal{A})\left(\mathrm{d} \alpha_{j}-\frac{\sum_{i \in \mathcal{A}} \alpha_{i} \mathrm{~d} \alpha_{i}}{1-s}\right) \\
& =\mathbb{1}(j \notin \mathcal{A})\left(\mathrm{d} \alpha_{j}-m\right) \tag{23}
\end{align*}
$$

where $m=\frac{\sum_{i \in \mathcal{A}} \alpha_{i} \mathrm{~d} \alpha_{i}}{1-s}$.

