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○ Trained with embeddings (stochastic unking)

● Add subword model during WE training
○ Bhatia et al. (2016), Wieting et al. (2016)

○ What if we don’t have access to the original 
corpus? (e.g. FastText)
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● Use the former as training objective, latter as input

● Pre-trained vectors as target
○ No need to access original unlabeled corpus

○ Many training examples

○ (No context)

● Subword units as inputs
○ Very extensible

○ (Character inventory changes?)
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● ✔ Surface form ✔ Syntactic properties ✘ Semantics
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Nearest:

programmatic

transformational

mechanistic
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contextual

NN FUN!!!
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● Negative effect on POS

● Attribute evaluation metric
○ Micro F1

Extrinsic Evaluation – POS + Attribute Tagging
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○ Relatively free word order

Institutional

Entrepreneurial

Linguistic

Anatomical

Ideological
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Results - Full Data

POS tags (accuracy) Morpho. Attributes (micro F1)
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Results - 5,000 training tokens

POS tags (accuracy) Morpho. Attributes (micro F1)
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Results - Chinese
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● Models for Polyglot also on github
○ <1MB each, dynet format
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● Especially good for:
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○ Large character vocabulary

● Sore spots and Future Work
○ Vietnamese - syllabic vocabulary

○ Hebrew and Arabic - nontrivial tokenization, no case

○ Try other subword levels (morphemes, phonemes, bytes)

○ Improve morphosyntactic attribute tagging scheme
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Questions?

Code & models: 

https://github.com/yuvalpinter/Mimick

Neglect

Satisfaction

Illness

Espionage

Bullying
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