Mimicking Word Embeddings using Subword RNNs

Yuval Pinter, Robert Guthrie, Jacob Eisenstein @yuvalpi

The Word Embedding Pipeline

Unlabeled corpus

Wikipedia
GigaWord
Reddit

The Word Embedding Pipeline

The Word Embedding Pipeline

The Word Embedding Pipeline

Assumed Pattern

All possible text

Unlabeled text

Actual Pattern

Unlabeled text

Actual Pattern

Sources of OOVs

Sources of OOVs

- Names

Chalabi has increasingly marginalized within Iraq, ...

Sources of OOVs

- Names
- Domain-specific jargon

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.

Sources of OOVs

- Names
- Domain-specific jargon
- Foreign words

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.
This term was first used in German (Hochrenaissance),

Sources of OOVs

- Names
- Domain-specific jargon
- Foreign words
- Rare morphological derivations

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.
This term was first used in German (Hochrenaissance),
Without George Martin the Beatles would have been just another untalented band as Oasis.

Sources of OOVs

- Names
- Domain-specific jargon
- Foreign words
- Rare morphological derivations
- Nonce words

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.
This term was first used in German (Hochrenaissance),
Without George Martin the Beatles would have been just another untalented band as Oasis.

What if Google morphed into GoogleOS?

Sources of OOVs

- Names
- Domain-specific jargon
- Foreign words
- Rare morphological derivations
- Nonce words
- Nonstandard orthography

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.
This term was first used in German (Hochrenaissance), .
Without George Martin the Beatles would have been just another untalented band as Oasis.

What if Google morphed into GoogleOS?
We'll have four bands, and Big D is cookin'. Iots of fun and great prizes.

Sources of OOVs

- Names
- Domain-specific jargon
- Foreign words
- Rare morphological derivations
- Nonce words
- Nonstandard orthography
- Typos and other errors

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.
This term was first used in German (Hochrenaissance), ...
Without George Martin the Beatles would have been just another untalented band as Oasis.

What if Google morphed into GoogleOS?
We'll have four bands, and Big D is cookin'. lots of fun and great prizes.
I dislike this urban society and I want to leave this whole enviroment.

Sources of OOVs

- Names
- Domain-specific jargon
- Foreign words
- Rare morphological derivations
- Nonce words
- Nonstandard orthography
- Typos and other errors
- ...

Chalabi has increasingly marginalized within Iraq, ...
Important species (...) include shrimp, (...) and some varieties of flatfish.
This term was first used in German (Hochrenaissance), ...
Without George Martin the Beatles would have been just another untalented band as Oasis.

What if Google morphed into GoogleOS?
We'll have four bands, and Big D is cookin'. lots of fun and great prizes.
I dislike this urban society and I want to leave this whole enviroment.
???

Common OOV handling techniques

- None (random init)

Common OOV handling techniques

- None (random init)

Common OOV handling techniques

- None (random init)
- One UNK to rule them all
- Average existing embeddings
- Trained with embeddings (stochastic unking)

Common OOV handling techniques

- None (random init)
- One UNK to rule them all
- Average existing embeddings
- Trained with embeddings (stochastic unking)

Common OOV handling techniques

- None (random init)
- One UNK to rule them all
- Average existing embeddings
- Trained with embeddings (stochastic unking)

Common OOV handling techniques

- None (random init)
- One UNK to rule them all
- Average existing embeddings
- Trained with embeddings (stochastic unking)
- Add subword model during WE training
- Bhatia et al. (2016), Wieting et al. (2016)

Common OOV handling techniques

- None (random init)
- One UNK to rule them all
- Average existing embeddings
- Trained with embeddings (stochastic unking)
- Add subword model during WE training
- Bhatia et al. (2016), Wieting et al. (2016)
- What if we don't have access to the original corpus? (e.g. FastText)

Char2Tag

Char2Tag

- Add subword layer to supervised task
- Ling et al. (2015), Plank et al. (2016)

Char2Tag

- Add subword layer to supervised task
- Ling et al. (2015), Plank et al. (2016)
- OOVs benefit from co-trained character model

Char2Tag

- Add subword layer to supervised task
- Ling et al. (2015), Plank et al. (2016)
- OOVs benefit from co-trained character model
- Requires large supervised training set for efficient transfer to test set OOVs

Enter MIMICK

Enter MIMICK

- What data do we have, post-unlabeled corpus?
- Vector dictionary
- Orthography (the way words are spelled)

Enter MIMICK

- What data do we have, post-unlabeled corpus?
- Vector dictionary
- Orthography (the way words are spelled)

Enter MIMICK

- What data do we have, post-unlabeled corpus?
- Vector dictionary
- Orthography (the way words are spelled)
- Use the former as training objective, latter as input

Enter MIMICK

- What data do we have, post-unlabeled corpus?
- Vector dictionary
- Orthography (the way words are spelled)
- Use the former as training objective, latter as input
- Pre-trained vectors as target
- No need to access original unlabeled corpus
- Many training examples
- (No context)

Enter MIMICK

- What data do we have, post-unlabeled corpus?
- Vector dictionary
- Orthography (the way words are spelled)
- Use the former as training objective, latter as input
- Pre-trained vectors as target
- No need to access original unlabeled corpus
- Many training examples
- (No context)
- Subword units as inputs
- Very extensible
- (Character inventory changes?)

MIMICK Training

Pre-trained Embedding (Polyglot/FastText/etc.)

MIMICK Training

Pre-trained Embedding (Polyglot/FastText/etc.)

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
 make

\square Character embeddings

MIMICK Training

Pre-trained Embedding (Polyglot/FastText/etc.)

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

make

m
a
k
e

Forward
LSTM
Character
embeddings
Character
embeddings

MIMICK Training

Pre-trained Embedding (Polyglot/FastText/etc.)

00000000
make

MIMICK Training

Pre-trained Embedding (Polyglot/FastText/etc.)
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0$
make

MIMICK Training

Pre-trained Embedding (Polyglot/FastText/etc.)

MIMICK Inference

Observation - Nearest Neighbors

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly
- lawnmower \rightarrow tradesman, bookmaker, postman, hairdresser

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly
- lawnmower \rightarrow tradesman, bookmaker, postman, hairdresser
- Hebrew

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly
- lawnmower \rightarrow tradesman, bookmaker, postman, hairdresser
- Hebrew

תפתור \rightarrow תתגשם
(she/you-3p.sg.) will come true
(she/you-3p.sg.) will solve

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly
- lawnmower \rightarrow tradesman, bookmaker, postman, hairdresser
- Hebrew

תפתור \rightarrow תתגשם
גאומטריים \rightarrow גיאומטריים
(she/you-3p.sg.) will come true
(she/you-3p.sg.) will solve geometric (m.pl., nontrad. spelling) geometric (m.pl.)

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly
- lawnmower \rightarrow tradesman, bookmaker, postman, hairdresser
- Hebrew

תפתור \rightarrow תתגשם

- גאומטריים \rightarrow גיאומטריים

אויסטרך \rightarrow ריצ'רדסון
(she/you-3p.sg.) will come true geometric (m.pl., nontrad. spelling) Richardson
(she/you-3p.sg.) will solve
geometric (m.pl.)
Eustrach

Observation - Nearest Neighbors

- English (OOV \rightarrow Nearest in-vocab words)
- MCT \rightarrow AWS, OTA, APT, PDM
- pesky \rightarrow euphoric, disagreeable, horrid, ghastly
- lawnmower \rightarrow tradesman, bookmaker, postman, hairdresser
- Hebrew

תפתור \rightarrow תתגשם
ג גאומטריים \rightarrow גיאומטריים
אויסטרך \rightarrow ריצ'רדסון
(she/you-3p.sg.) will come true geometric (m.pl., nontrad. spelling) Richardson
(she/you-3p.sg.) will solve geometric (m.pl.)
Eustrach

- $\sqrt{ }$ Surface form
\checkmark Syntactic properties
X Semantics

Intrinsic Evaluation - RareWords

Intrinsic Evaluation - RareWords

- RareWords similarity task: morphologically-complex, mostly unseen words

Intrinsic Evaluation - RareWords

- RareWords similarity task: morphologically-complex, mostly unseen words

Intrinsic Evaluation - RareWords

- RareWords similarity task: morphologically-complex, mostly unseen words
- Names
- Domain-specific jargon
- Foreign words
- Rare(-ish) morphological derivations
- Nonce words
- Nonstandard orthography
- Typos and other errors
-

Similarity correlation on RareWords

Intrinsic Evaluation - RareWords

- RareWords similarity task: morphologically-complex, mostly unseen words

- Names
- Domain-specific argon
- Foreign words
- Rare(-ish) morphological derivations
- Nonce words
- Nonstandard orthography
- Typos and other errors

Extrinsic Evaluation - POS + Attribute Tagging

- UD is annotated for POS and morphosyntactic attributes
- Eng: his stated goals
- Cze: osoby v pokročilém věku people of advanced age

Tense=Past|VerbForm=Part
Animacy=Inan|Case=Loc|Degree=Pos|Gender=Masc|Negative=Pos|Number=Sing

- Names
- Domain-specific jargon
- Foreign words
- Rare(-ish) morphological derivations
- Nonce words
- Nonstandard orthography
- Typos and other errors

Extrinsic Evaluation - POS + Attribute Tagging

- UD is annotated for POS and morphosyntactic attributes
- Eng: his stated goals
- Cze: osoby v pokročilém věku people of advanced age

Tense=Past|VerbForm=Part
Animacy=Inan|Case=Loc|Degree=Pos|Gender=Masc|Negative=Pos|Number=Sing

- POS model from Ling et al. (2015)
- Names
- Domain-specific jargon
- Foreign words
- Rare(-ish) morphological derivations
- Nonce words
- Nonstandard orthography
- Typos and other errors

Extrinsic Evaluation - POS + Attribute Tagging

- UD is annotated for POS and morphosyntactic attributes
- Eng: his stated goals
- Cze: osoby v pokročilém věku people of advanced age
- POS model from Ling et al. (2015)
- Attributes - same as POS layer

Tense=Past|VerbForm=Part
Animacy=Inan|Case=Loc|Degree=Pos|Gender=Masc|Negative=Pos|Number=Sing

Extrinsic Evaluation - POS + Attribute Tagging

- UD is annotated for POS and morphosyntactic attributes
- Eng: his stated goals
- Cze: osoby v pokročilém věku people of advanced age
- POS model from Ling et al. (2015)
- Attributes - same as POS layer
- Negative effect on POS

Tense=Past|VerbForm=Part
Animacy=Inan|Case=Loc|Degree=Pos|Gender=Masc|Negative=Pos|Number=Sing

Extrinsic Evaluation - POS + Attribute Tagging

- UD is annotated for POS and morphosyntactic attributes
- Eng: his stated goals
- Cze: osoby v pokročilém věku people of advanced age
- POS model from Ling et al. (2015)
- Attributes - same as POS layer
- Negative effect on POS
- Attribute evaluation metric
- Micro F1

Tense=Past|VerbForm=Part

Animacy=Inan|Case=Loc|Degree=Pos|Gender=Masc|Negative=Pos|Number=Sing

Language Selection

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23

Language Selection

- \mid UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative

Language Selection

- \mid UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity
- 13 Indo-European (7 different branches)

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity
- 13 Indo-European (7 different branches)
- 10 from 8 non-IE branches

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity
- 13 Indo-European (7 different branches)
- 10 from 8 non-IE branches
- MRLs (e.g. Slavic languages)

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity
- 13 Indo-European (7 different branches)
- 10 from 8 non-IE branches
- MRLs (e.g. Slavic languages)
- Much word-level data

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity
- 13 Indo-European (7 different branches)
- 10 from 8 non-IE branches
- MRLs (e.g. Slavic languages)
- Much word-level data
- Relatively free word order

Language Selection

- |UD \cap Polyglot $\mid=44$, we took 23
- Morphological structure
- 12 fusional
- 3 analytic
- 1 isolating
- 7 agglutinative
- Geneological diversity
- 13 Indo-European (7 different branches)
- 10 from 8 non-IE branches
- MRLs (e.g. Slavic languages)
- Much word-level data
- Relatively free word order

Language Selection (contd.)

Language Selection (contd.)

- Script type

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion
- Vietnamese - tokens are non-compositional syllables

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion
- Vietnamese - tokens are non-compositional syllables
- Attribute-carrying tokens

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion
- Vietnamese - tokens are non-compositional syllables
- Attribute-carrying tokens
- Range from 0\% (Vietnamese) to 92.4% (Hindi)

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion
- Vietnamese - tokens are non-compositional syllables
- Attribute-carrying tokens
- Range from 0\% (Vietnamese) to 92.4\% (Hindi)
- OOV rate (UD against Polyglot vocabulary)

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion
- Vietnamese - tokens are non-compositional syllables
- Attribute-carrying tokens
- Range from 0\% (Vietnamese) to 92.4\% (Hindi)
- OOV rate (UD against Polyglot vocabulary)
- 16.9\%-70.8\% type-level (median 29.1\%)

Language Selection (contd.)

- Script type
- 7 in non-alphabetic scripts
- Ideographic (Chinese) - $\sim 12 \mathrm{~K}$ characters
- Hebrew, Arabic - no casing, no vowels, syntactic fusion
- Vietnamese - tokens are non-compositional syllables
- Attribute-carrying tokens
- Range from 0\% (Vietnamese) to 92.4\% (Hindi)
- OOV rate (UD against Polyglot vocabulary)
- 16.9\%-70.8\% type-level (median 29.1\%)
- 2.2\%-33.1\% token-level (median 9.2\%)

Evaluated Systems

- NONE: Polyglot's default UNK embedding

the flatfish is sitting

Evaluated Systems

- NONE: Polyglot's default UNK embedding
- MIMICK

the flatfish is sitting

Evaluated Systems

- NONE: Polyglot's default UNK embedding
- MIMICK
- CHAR2TAG - additional RNN layer
- 3x Training time

Evaluated Systems

- NONE: Polyglot's default UNK embedding
- MIMICK
- CHAR2TAG - additional RNN layer
- 3x Training time
- BOTH: MIMICK + CHAR2TAG

Evaluated Systems

- NONE: Polyglot's default UNK embedding
- MIMICK
- CHAR2TAG - additional RNN layer
- 3x Training time
- BOTH: MIMICK + CHAR2TAG

POINT UNION ROAD LIGHT LONG

Results - Full Data

Attribute F1 (full data), macro-avg

Morpho. Attributes (micro F1)

Results - 5,000 training tokens

POS tags (accuracy)

Attribute F1 (5K training tokens), macro-avg

Morpho. Attributes (micro F1)

Results - Language Types (5,000 tokens)

Slavic languages POS

Results - Language Types (5,000 tokens)

Slavic languages POS

Attribute $\mathrm{F} 1(5 \mathrm{~K})$, agglutinative languages average

Agglutinative languages morpho. attribute F1

Results - Chinese

POS tags (accuracy)

Morpho. Attributes (micro F1)

A Word (Model) from our Sponsor

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!
- Sentiment!

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!
- Sentiment!
- Parsing!

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!
- Sentiment!
- Parsing!
- IE!

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!
- Sentiment!
- Parsing!
- IE!
- QA!

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!
- Sentiment!
- Parsing!
- IE!
- QA!

Code \& models:

https://github.com/yuvalpinter/Mimick

A Word (Model) from our Sponsor

- Our extrinsic results are on tagging
- Please consider us for all your WE use cases!
- Sentiment!
- Parsing!
- IE!
- QA!

Code \& models:

https://github.com/yuvalpinter/Mimick

- Code compatible with w2v, Polyglot, FastText

A Word（Model）from our Sponsor

－Our extrinsic results are on tagging
－Please consider us for all your WE use cases！
－Sentiment！
－Parsing！
－IE！
－QA！

Code \＆models：

https：／／github．com／yuvalpinter／Mimick
－Code compatible with w2v，Polyglot，FastText
－Models for Polyglot also on github

A Word（Model）from our Sponsor

－Our extrinsic results are on tagging
－Please consider us for all your WE use cases！
－Sentiment！
－Parsing！
－IE！
－QA！

Code \＆models：

https：／／github．com／yuvalpinter／Mimick
－．．．
－Code compatible with w2v，Polyglot，FastText
－Models for Polyglot also on github
－＜1MB each，dynet format －Cs－cpp－60eps．tar．gz －da－cpg－60eps．tar．gz （1）el－cpg－60eps．tar．gz国en－cpg－60eps．tar．gz －${ }^{\text {es－cppg－60eps．tar．gz }}$目eu－cpg－60eps．tar．gz国f－cpg－60eps．tar．gz ©he－cpg－60eps．tar．gz （1）hi－cpg－60eps．tar．gz © hu－cpg－60eps．tar．gz ©id－cpg－60eps．tar．gz国it－cpg－60eps．tar．gz © kk－cpg－60eps．tar．gz 1 1 l－cpg－60eps．tar．gz － 1 ro－cpg－60eps．tar．gz © ru－cpg－60eps．tar．gz － 5 sv－cpp－60eps．tar．gz 2ta－cpg－60eps．tar．gz国tr－cpg－60eps．tar．gz （1）vi－cpg－60eps．tar．gz （2zh－ccpg－60eps．tar．gz

A Word（Model）from our Sponsor

－Our extrinsic results are on tagging
－Please consider us for all your WE use cases！
－Sentiment！
－Parsing！
－IE！
－QA！

Code \＆models：

https：／／github．com／yuvalpinter／Mimick
－．．．
－Code compatible with w2v，Polyglot，FastText
－Models for Polyglot also on github
－＜1MB each，dynet format
－Learn all OOVs in advance and add to param table，or －Cs－cpg－60eps．tar．gz －da－cpg－60eps．tar．gz国el－cpg－60eps．tar．gz国en－cpg－60eps．tar．gz园es－cpg－60eps．tar．gz目eu－cpg－60eps．tar．gz国fa－cpg－60eps．tar．gz －he－cpg－60eps．tar．gz －hi－cpg－60eps．tar．gz国hu－cpg－60eps．tar．gz固 id－cpg－60eps．tar．gz国it－cpg－60eps．tar．gz －kk－cpg－60eps．tar．gz图 lv－cpg－60eps．tar．gz －ro－cpg－60eps．tar．gz国ru－cpg－60eps．tar．gz国 sv－cpg－60eps．tar．gz －ta－cpg－60eps．tar．gz国 tr－cpg－60eps．tar．gz国 vi－cpg－60eps．tar．gz目zh－cpg－60eps．tar．gz

A Word（Model）from our Sponsor

－Our extrinsic results are on tagging
－Please consider us for all your WE use cases！
－Sentiment！
－Parsing！
－IE！
－QA！

Code \＆models：

https：／／github．com／yuvalpinter／Mimick
－．．．
－Code compatible with w2v，Polyglot，FastText
－Models for Polyglot also on github
－＜1MB each，dynet format
－Learn all OOVs in advance and add to param table，or
－Load into memory and infer on－line － $\mathbf{1}$ cs－cpg－60eps．tar．gz －da－cpg－60eps．tar．gz国el－cpg－60eps．tar．gz国en－cpg－60eps．tar．gz园es－cpg－60eps．tar．gz目eu－cpg－60eps．tar．gz图fa－cpg－60eps．tar．gz国 he－cpg－60eps．tar．gz －hi－cpg－60eps．tar．gz国hu－cpg－60eps．tar．gz固 id－cpg－60eps．tar．gz国it－cpg－60eps．tar．gz国kk－cpg－60eps．tar．gz图 lv－cpg－60eps．tar．gz －ro－cpg－60eps．tar．gz － \mathbf{B} ru－cpg－60eps．tar．gz国 sv－cpg－60eps．tar．gz －ta－cpg－60eps．tar．gz图tr－cpg－60eps．tar．gz目vi－cpg－60eps．tar．gz这zh－cpg－60eps．tar．gz

Conclusions

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages
- Large character vocabulary

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages
- Large character vocabulary
- Sore spots and Future Work

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages
- Large character vocabulary
- Sore spots and Future Work
- Vietnamese - syllabic vocabulary

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages
- Large character vocabulary
- Sore spots and Future Work
- Vietnamese - syllabic vocabulary
- Hebrew and Arabic - nontrivial tokenization, no case

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages
- Large character vocabulary
- Sore spots and Future Work
- Vietnamese - syllabic vocabulary
- Hebrew and Arabic - nontrivial tokenization, no case
- Try other subword levels (morphemes, phonemes, bytes)

Conclusions

- MIMICK: an OOV-extension embedding processing step for downstream tasks
- Compositional model complementing distributional artifact
- Powerful technique for low-resource scenarios
- Especially good for:
- Morphologically-rich languages
- Large character vocabulary
- Sore spots and Future Work
- Vietnamese - syllabic vocabulary
- Hebrew and Arabic - nontrivial tokenization, no case
- Try other subword levels (morphemes, phonemes, bytes)
- Improve morphosyntactic attribute tagging scheme

Questions?

Neglect
Satisfaction Illness
Espionage Bullying

Code \& models:
 https://github.com/yuvalpinter/Mimick

