
Supplement to
Friends with Motives: Using Text to Infer Influence on SCOTUS

Yanchuan Sim
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

ysim@cs.cmu.edu

Bryan Routledge
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA 15213, USA

routledge@cmu.edu

Noah A. Smith
Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

nasmith@cs.washington.edu

A Modeling details

Votes model. The joint likelihood of our votes
model is

Lvote(a, b,ψ,θ,∆,χ,π, z,v,w)
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where

Vi,j = p(vi,j | ai, bi,ψj ,θi,∆i, χj ,π)

and
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We first initialize the topic mixtures (θ,∆) and
topic-word distributions (φ) of the model using la-

tent Dirichlet allocation.1 In each iteration, we sam-
pled the latent variables a, b,ψ,θ,∆,χ, and π in
turn using the Metropolis-Hastings algorithm (Hast-
ings, 1970). We discarded samples from the first
1,500 iterations (burn-in) and keeping every 10th
subsequent sample to compute the posterior mean.
In total, we performed 3,000 iterations over the data.

Opinions model. The joint likelihood of the opin-
ion model is

Lopinion(a, b,ψ,θ,∆,χ,π, z,Γ, τ ,x,v,w)
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1We used the online variational Bayes algorithm (Hoffman
et al., 2010) implementation found in Python scikit-learn
(Pedregosa et al., 2011).
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After estimating the parameters for the vote model,
we held all the parameters of the vote model fixed
and estimate the opinion model parameters (Γ, τ ,x)
using the Metropolis-Hastings algorithm. We dis-
carded samples from the first 2,500 iterations (burn-
in) and keeping every 10th subsequent sample to
compute the posterior mean. In total, we performed
5,000 iterations over the opinions model.

B Hyperparameters

Table 1 presents the hyperparameters for
our final models. We experimented with
σ2I ∈ {0.25, 0.5, 1, 2}, σ2P ∈ {0.25, 0.5, 1, 2},
ηvote ∈ {0.125, 0.25, 0.5, 1, 2, 4}, and
ηopinion ∈ {0.125, 0.25, 0.5, 1, 2, 4}, to find the
best parameters using 5-fold cross validation on
accuracy and perplexity.

C Justice opinion topics

Table 2 presents the top 3 topics associated with
each justice’s opinions topic mixture.
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Description Symbol Value
No. of topics T 128
Document-topic (θ,∆,Γ) prior α 1

T
Topic-word (φ) prior β 0.001
Justice IP (ψ) diagonal variance σ2

J 1.0
Justice influenceability (χ) scale σ2

I 0.5
Amicus persuasiveness (π) scale σ2

P 1
Case parameters (a, b) variance σ2

C 4
Vote model utility function weight ηvote 1
Opinion model utility function weight ηopinion 2

Table 1: Final hyperparameter settings for our model.

John G. Roberts
32: speech, first amendment, free speech, message, expression
61: eeoc, title vii, discrimination, woman, civil rights act
52: sec, fraud, security, investor, section ##b
Ruth B. Ginsburg
61: eeoc, title vii, discrimination, woman, civil rights act
80: class, settlement, rule ##, class action, r civ
96: taxpayer, bank, corporation, fund, irs
Antonin Scalia
94: 42 USC 1983, qualified immunity, immunity, official, section ####
57: president, senate, executive, article, framer
80: class, settlement, rule ##, class action, r civ
Elena Kagan
34: candidate, buckley, 424 US 1, contribution, fec
96: taxpayer, bank, corporation, fund, irs
105: fda, drug, manufacturer, product, federal law
Stephen Breyer
96: taxpayer, bank, corporation, fund, irs
61: eeoc, title vii, discrimination, woman, civil rights act
15: plea, trial counsel, strickland, magistrate, guilty plea
Anthony M. Kennedy
57: president, senate, executive, article, framer
94: 42 USC 1983, qualified immunity, immunity, official, section ####
15: plea, trial counsel, strickland, magistrate, guilty plea
Sonia Sotomayor
22: sentence, offense, release, guidelines, guideline
23: legislature, voter, race, 42 USC 1973, minority voter
52: sec, fraud, security, investor, section ##b
Samuel A. Alito
32: speech, first amendment, free speech, message, expression
61: eeoc, title vii, discrimination, woman, civil rights act
52: sec, fraud, security, investor, section ##b
Clarence Thomas
5: federal government, framer, commerce, commerce clause, lopez
32: speech, first amendment, free speech, message, expression
72: due process, liberty, fourteenth amendment, hearing, forfeiture

Table 2: Top 3 topics contributed to Court opinions for recently active justices (Γ).


