
Appendix: On a Strictly Convex IBM Model 1

Appendix A: Convex and Concave
functions.

For what follows, we denote dom h by the do-
main of h.

Definition 1. A set S is convex if and only if
all x, y ∈ S and all θ ∈ [0, 1], we have θx +
(1− θ)y ∈ S.
Definition 2. A function h : Rn → R is con-
vex if and only if dom h is convex and for all
x, y ∈ dom h and all θ ∈ [0, 1], Jensen’s in-
equality holds:

h(θx+ (1− θ)y) ≤ θh(x) + (1− θ)h(y) .

Definition 3. A function h : Rn → R is
strictly convex if and only if dom h is convex
and for all x 6= y ∈ dom h and all θ ∈ (0, 1),
Jensen’s inequality holds:

h(θx+ (1− θ)y) < θh(x) + (1− θ)h(y) .

Definition 4. A function h : Rn → R is con-
cave if and only if dom h is convex and for
all x, y ∈ dom h and all θ ∈ [0, 1], Jensen’s
inequality holds:

h(θx+ (1− θ)y) ≥ θh(x) + (1− θ)h(y) .

Definition 5. A function h : Rn → R is
strictly concave if and only if dom h is convex

and for all x 6= y ∈ dom h and all θ ∈ (0, 1),
Jensen’s inequality holds:

h(θx+ (1− θ)y) > θh(x) + (1− θ)h(y) .

For visual reference, the graph below shows
a convex function

g(x) =


−x− 3, : x ≤ −3
0, : − 3 < x < 3

x− 3, : 3 ≤ x

and strictly convex function h(x) = |x|. No-
tice that g has multiple minimization points
while h has a unique minimizer. For IBM
Model 1, the log-likelihood’s ”flat parts” are
much more complicated than that of the sim-
ple graph above. However, this graph captures
the main idea of why a convex function has
multiple optima points.
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Appendix B: Convex Optimization.

Definition 6. A minimization optimization
problem

minimize
x

h0(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m.

aTj x = bj , j = 1, . . . , l.

is said to be convex if hi are convex ∀i.
Definition 7. A maximization optimization
problem

maximize
x

h0(x)

subject to hi(x) ≥ 0, i = 1, . . . ,m.

aTj x = bj , j = 1, . . . , l.

is said to be convex if hi are concave ∀i.
We note that the main issue with the above

is that the equality constraints have to be lin-
ear.

Under the above setup, it can be shown that
the feasible set (the set of points that satisfy
the constraints) is convex and that any local
optimum for the problem is a global optimum.
If h0 is strict then any local optimum is actu-
ally then the unique global optimum.


