
0.2 0.6 1.0

�

0

1

2

F
1
ga
in

mBERT
XLMR-base
XLMR-large

Figure 9: Average F1 gains over the baseline on NER task.

A Appendix

A.1 Effect of hyperparameters

In this section, we study the effect of two hyperpa-
rameters in MVR: the weight of consistency loss �
and the temperature ⌧ for flattening the prediction
distribution. First, we analyze the effect of � on
the NER tasks in Fig. 9. We notice that mBERT
performs better using a larger �, while in general
a value between 0.2 to 0.6 works reasonably well
for all models. Note that we still use � = 0.2 for
mBERT because we selected this value based on
the performance on the English dev set.

We only tune the temperature ⌧ for question an-
swering tasks because it has a larger output space
than other tasks. We plot the average F1 improve-
ment on the QA tasks in Fig. 10.

Simplying using ⌧ = 1 works well for the
smaller mBERT and XLM-R base models. The
best-performing XLM-R large model benefits from
a larger ⌧ , or a flattened distribution, probably be-
cause its prediction distribution is relatively sharper
or more confident than others. Generally the model
is not particularly sensitive to the value of ⌧ .

Sequence tagging task requires truncating the in-
puts and targets to a predefined length. This could
be a problem for calculating KL divergence when
the deterministic and probabilistic segmented in-
puts have different number of tags been discarded.
In our implementation of MVR, we simply calcu-
late the KL divergence on the tags shared by the
two inputs. Details of this implementation can be
found in the code base.

A.2 Training details

We select hyperparameters based on the validation
performance of English on the NER task. We fine-
tune all models on the NVIDIA V100 GPU. Both
SR and MVR have the same number of model pa-
rameters as the baseline. Baseline experiments on

1 2 4

⌧

0.0

0.5

1.0

1.5

F
1
ga
in

mBERT
XLMR-base
XLMR-large

Figure 10: Average F1 gains over the baseline on QA tasks.

all tasks except for the XNLI classification task
generally finish within 5 hours on a single GPU.
The baseline experiment on XNLI takes about 24
hours on 2 GPUs. SR takes about the same training
time as the baseline, and MVR takes about twice
the amount of time.

A.3 Other analysis

MVR improves more for languages with non-

Latin script We further compare the gains of
MVR over SR on languages with Latin and non-
Latin script. The plots can be found in Fig. 11.
Overall MVR leads to larger improvements over
subword regularization for languages with non-
Latin script for both mBERT and XLM-R large. By
enforcing prediction consistency between different
segmentation, MVR is better than SR at making
the model robust to languages with very different
segmentation than the language used for finetuning.



NER XNLI PAWS-X XQuAD MLQA0.0

0.5

1.0

1.5

2.0

G
ai
n
ov
er

P
S

mBERT

Latin
non-Latin

NER XNLI PAWS-X XQuAD MLQA
�0.5

0.0

0.5

1.0

G
ai
n
ov
er

P
S

XLM-R large

Latin
non-Latin

Figure 11: Gains of MVR over SR for languages with Latin
vs. non-Latin script.


