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Appendix A: derivation of incremental KL

We denote the distribution over a sequence of T
tokens by p(w1:T ) = p(w1, w2, . . . , wT ). We are
interested in the KL divergence between two such
distributions, KL (p(w1:T ) ‖ q(w1:T )). We show
that our approximation over possible captions is
the best incremental estimator of this intractable
objective. First, note that the KL divergence factors
in the following way.

Lemma 1.

KL (p(w1:2) ‖ q(w1:2))

= KL (p(w1) ‖ q(w1))

+ Ep(w1)KL (p(w2|w1) ‖ q(w2|w1))

Proof.

KL (p(w1:2) ‖ q(w1:2))

=
∑
w1

∑
w2

p(w1:2) log
p(w1:2)

q(w1:2)

=
∑
w1

∑
w2

p(w1:2) log
p(w1)

q(w1)

+
∑
w1

∑
w2

p(w1:2) log
p(w2|w1)

q(w2|w1)

=
∑
w1

log
p(w1)

q(w1)

∑
w2

p(w1:2)

+
∑
w1

p(w1)
∑
w2

p(w2|w1) log
p(w2|w1)

q(w2|w1)

= KL (p(w1) ‖ q(w1))

+ Ep(w1)KL (p(w2|w1) ‖ q(w2|w1))

Now, letw∗
1 be the token at which p(w1) takes its

maximum value. Then w∗
1 is the best single-sample

approximation of the expectation:

Ep(w1)KL (p(w2|w1) ‖ q(w2|w1))

≈ KL (p(w2|w∗
1) ‖ q(w2|w∗

1)

If we assume that p(w1:T ) is Markov (as in a recur-
rent model) then it follows from repeatedly apply-
ing the lemma that

KL (p(w1:T ) ‖ q(w1:T ))

=
T∑
i=1

KL
(
p(wi|w∗

1, . . . , w
∗
i−1) ‖ q(wi|w∗

1 . . . , w
∗
i−1

)
=

T∑
i=1

KL
(
p(wi|w∗

i−1) ‖ q(wi|w∗
i−1)

)
recovering our objective.

Appendix B: Parameter settings

For both the speaker task and listener task, we used
a learning rate of 0.0005, took 6 gradient steps after
each trial, and used a batch size of 8 when sampling
utterances from the augmented set of sub-phrases,
At each gradient step, we sampled 50 objects from
the full domain O of COCO to approximate our
regularization term. We set the coefficients weight-
ing each term in our loss function as follows: 1.0
(utterance loss), 0.1 (contrastive loss), 0.5 (KL reg-
ularization), 0.3 (local rehearsal).

Appendix C: Regression details

To formally test increasess in efficiency reported
for baseline pairs of humans in Sec. 4.1 (see Fig. 3
and S2), we conducted a mixed-effects regression
predicting utterance length. We included a fixed
effect for context type (i.e. ‘simple’ vs. ‘challeng-
ing’) as well as orthogonalized linear and quadratic
effects of repetition number, and each of their inter-
actions with context type. We also included random
intercepts accounting for variability in initial utter-
ance length at the pair- and image-level. To test
increases in the adaptive listener model’s accuracy
in Sec. 4.2, we conducted a mixed-effects logistic
regression on trial-level responses (i.e. ‘correct’
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There is snow on the ground 
outside the windows view 

theres snow on the ground
snow
snow
snow
snow

1

2
3
4
5
6

A table full of cups

table

table full of cups 

table
table

table of glassware

You are looking out side 
the window of a bus 

Looking outside a
bus
bus
bus
bus

rain garage

it is looking outside a 
window pan where you can 
clearly see the windows frame. 
there's a sign that says rain garage 

rain garage
rain garage
rain garage

a living room filled with 
lots of furniture

living room

living room
living room
living room
living room

1

2

3
4
5
6

a group of people standing 
on top of a sandy beach 

beach

a sandy beach

beach
beach

beach

a group of zebra standing 
next to each other
a group of zebra standing 
next to each other
zebra
zebra
zebra
zebra

a video game

two men playing a 
video game together
men playing a video 
game together

game
men
game

human speaker (listening task)

model speaker (speaking task)

A

B

Figure S1: Complete set of referring expressions produced by (A) a human speaker interacting with our listener
model and (B) our speaker model interacting with a human partner, as described below in Appendix D. Utterances
are color-coded with the response accuracy. Green is correct; red is incorrect.
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Figure S2: Speaker model evaluations with human listener. Error ribbons are bootstrapped 95% CIs.

vs. ‘incorrect’) with the same effect structure, re-
moving context type, as this experiment was only
conducted on challenging contexts. This same ef-
fect structure was used to test improvements in the
adaptive speaker model’s efficiency in Sec. 4.3.

We tested our listener ablations in Sec. 5.2 us-
ing a mixed-effects logistic regression with fixed
effects of repetition number and model variant,
as well as participant-level random intercepts and
slopes (for repetition number). We dummy-coded
the models setting the baseline at the full model, to
facilitate direct comparison.

Appendix D: Speaker evaluation and
analysis

Task description

We designed the speaking task such that the pre-
trained model’s efficiency — the number of words
needed to identify the target — would be poor at
the outset. Because the COCO captions seen during
pre-training were relatively exhaustive (i.e. men-
tioning many attributes of the image), we required
simple contexts where the pre-trained model would
produce more complex referring expressions than
required to distinguish the images. To construct
simple contexts we sampled images randomly from
different COCO category labels. For example, one
context might contain an image of an elephant, an
image of a boat, and so on.

Evaluation results

We evaluated our model in the speaking task using
simple contexts, which requires the model to form
more efficient conventions given feedback from
human responses. 53 participants from Amazon

Mechanical Turk were paired to play the listener
role with our speaker model. Utterances were se-
lected from the LSTM decoder using beam search
with a beam width of 50 and standard length nor-
malization to mitigate the default bias against long
utterances (e.g. Wu et al., 2016). After producing
an utterance, the model received feedback about the
listener’s selection. If its partner correctly selected
the intended target, it proceeded to adapt condi-
tioning on the new observation; in the event of an
incorrect response, it refrained from updating. This
strategy thus only leads to inferences about utter-
ance meanings (and sub-phrase meanings, through
data augmentation) after positive evidence of un-
derstanding.

As expected, the model starts with much longer
captions than human speakers use in simple con-
texts (Fig. S2). It uses nearly as many words for
simple contexts as humans used for challenging
contexts. However, it gets dramatically more effi-
cient over interaction while maintaining high accu-
racy. We found a significant decrease in utterance
length over successive repetitions, t = 35, p <
0.001, using the same mixed-effects regression
structure reported above. A non-adapting baseline
shows no improvement, as it has no mechanism
for changing its expectations about utterances over
time.

Pragmatic reasoning supports speaker
informativity

We now proceed to analyze the speaking task, be-
ginning with the role of pragmatic reasoning. In
principle, incorporating pragmatic reasoning dur-
ing adaptation (i.e. in our contrastive likelihood
term) introduces an inductive bias for mutual exclu-



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6
a group of people standing
on a sandy beach

a group of people
standing on top

a group of people
standing

a group of people a group of a group

a couple of zebra standing
next to trees

a couple of zebra stand-
ing next

a couple of zebra a couple of a couple a couple

a living room filled with
lots of furniture

a living room filled
with lots furniture

a living room filled
with furniture

a living room a living a living

Table S1: Examples of utterances produced by ablated speaker with pure cost penalty instead of data augmentation,
which quickly become ungrammatical and incoherent.

sivity (Smith et al., 2013; Frank et al., 2009; Gandhi
and Lake, 2019). When the listener correctly se-
lects the target, the speaker not only learns that the
listener believes this is a good description for the
target but can also infer that the listener does not
think it is a good description for the other objects
in context; otherwise, they would have selected
one of the other objects instead. Thus, in addition
to boosting listener adaptation, we expected ex-
plicit pragmatic reasoning to allow the speaker to
gradually produce more informative, distinguishing
utterances.

The challenging contexts provide an ideal setting
for evaluating speaker pragmatics, because the pre-
trained speaker model initially produces the same
caption for all four images in context. We simu-
lated games with our adaptive speaker as well as an
ablated variant with no contrastive term in its adap-
tation objective. The model was always given feed-
back that the correct target was selected. We mea-
sured informativity by examining the proportion
of words that overlapped between the utterances
produced for the different images in a particular
context: |ui∩uj |/min(|ui|, |uj |) for combinations
of utterances (ui, uj) where i 6= j. This measure
ranges between 0% when the intersection is empty
and 100% in the event of total overlap.

Even though both the full model and the ablated
variant initially produce completely overlapping
utterances, we found a rapid differentiation of ut-
terances for the model with pragmatics intact, as
each image becomes associated with a distinct la-
bel. Meanwhile, the ablated version continues to
have high overlap even on later repetitions: it of-
ten ends up producing the same one-word label for
multiple objects as it reduces (Fig. S3A).

Compositional data augmentation supports
efficiency

Finally, we investigated the role played by the com-
positional data augmentation mechanism for allow-

ing our speaker model to become more efficient
(Fig. S3B). Two concerns may be raised about this
mechanism. First, it is possible that the RNN de-
coder architecture is already able to appropriately
update expectations about sub-parts from the whole
without being given explicit parses, so augmenta-
tion is redundant. Second, it may be argued that
this augmentation mechanism just imposes a glori-
fied length penalty forcing the speaker to shorten,
rather than allowing efficiency to come out of the
model naturally.

To address these concerns, we compare augmen-
tation with two variants: (1) an ablated model with
no augmentation, and (2) an alternative mechanism
that explicitly imposes a length cost at production
time. This alternative is implemented by re-ranking
the top 25 utterances from beam search according
to U(ui) = P (ui)/`(w)− βw`(w) where the first
term is the length-normalized beam-search objec-
tive and the second term is an explicit bias for
shorter utterances. When βw = 0, this is equiv-
alent to top-k beam search but as βk → ∞, the
model will increasingly prefer short utterances.

We simulated the behavior of these model vari-
ants in each of the 53 games we collected in our
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Figure S3: Speaker model ablations. (A) The con-
trastive loss allows the model to become informative
in challenging contexts. (B) Compositionally augment-
ing adaptation data with sub-phrases of the utterance
allows stronger gains in efficiency than a simple length
penalty. Error ribbons are bootstrapped 95% CIs.
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interactive speaking task, using the same sequence
of images and feedback about correctness. We
found that that the ablated model with no augmen-
tation fails to become more efficient: at least for
our RNN decoder architecture, evidence of success
only reinforces expectations about the full caption;
it cannot not propagate this evidence to the individ-
ual parts of the utterance. A sufficiently high length
penalty does allow utterances to become shorter,
but reduces linearly rather than quadratically (as hu-
mans do; Clark and Wilkes-Gibbs, 1986; Hawkins
et al., 2019). Moreover, upon inspecting the utter-
ances produced by this variant (see Table S1), we
found that it simply cuts off the ends of utterances,
whereas compositional data augmentation is based
on a syntactic parse and thus allows the model to
preserve grammaticality and gradually build expec-
tations about meaningful sub-units. In sum, we find
that our augmentation mechanism is not reducible
to a coarse length bias, and is able to compensate
for representation failures in current recurrent ar-
chitectures (Dasgupta et al., 2018; Nikolaus et al.,
2019).1
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