
An Implementation of a Flexible Author-Reviewer Model of
Generation using Genetic Algorithms*

Ruli Manurung
a
, Graeme Ritchie

b
, and Henry Thompson

c

a
Faculty of Computer Science, University of Indonesia, Depok 16424, Indonesia

maruli@cs.ui.ac.id
b
Dept. of Computing Science, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK

g.ritchie@abdn.ac.uk
c
HCRC, University of Edinburgh, Informatics Forum, 10 Crichton St., Edinburgh EH8 9AB, UK

ht@inf.ed.ac.uk

Abstract. This paper proposes performing natural language generation using genetic
algorithms to address two issues: the difficulty in controlling global textual features which
arise from a large number of interdependent local decisions, and the difficulty in applying
conventional NLG wisdom in domains where the communicative goal lacks sufficient
detail. It presents details of an implemented system that embodies the aforementioned
proposal, and discusses the results of an empirical study conducted using the system.

Keywords: natural language generation, genetic algorithms, poetry, creative language.

1. Background
This paper proposes an approach to natural language generation (NLG) using the genetic
algorithm (GA), a widely used stochastic search method.

In this section we discuss two well known issues in NLG, and in Section 2 we discuss why
and how genetic algorithms can address these issues. In Sections 3 to 5 we present an
implementation of an NLG system that embodies the proposed approach. Our own interest is in
developing a generator that conveys a given semantics as a text that simultaneously exhibits a
certain metre, i.e. regular patterns in the rhythm of the text. Consequently, some of the design
decisions, particularly concerning the evaluation functions, are domain-specific. However, we
believe the architecture as a whole is of general-purpose interest. The paper concludes with
some examples and discussion in Section 6.

1.1.Achieving fidelity and fluency
Oberlander and Brew (2000) argue that NLG systems must achieve fidelity and fluency goals,
where fidelity is the faithful representation of the relevant knowledge contained within the
communicative goal, and fluency is the ability to do it in a natural-sounding way such that it
engenders a positive evaluation of the system by the user. In practice, applied NLG systems can
often sidestep the fluency goal given a very restricted domain of output, with a limited style that
may be just enough to serve the purpose of the application.

Unfortunately, fluency may be controlled by global textual features which arise from a large
number of local decisions, few of which are based on stylistic considerations. This does not suit

* The work reported in this paper was carried out while all authors were at the University of Edinburgh.

Copyright 2008 by Ruli Manurung, Graeme Ritchie, and Henry Thompson

272

22nd Pacific Asia Conference on Language, Information and Computation, pages 272–281

the prevalent paradigm of NLG as a top-down, goal-driven process, decomposed into the stages
of content determination, text planning, and surface realisation, typically implemented within a
pipeline architecture (Reiter, 1994) (cf. the “generation gap” problem in Meteer (1991)).

Oberlander and Brew propose an architecture which consists of two collaborating modules: an
author and a reviewer. The author faces the task of generating a text that conveys the correct
propositional content, i.e. achieving fidelity, whereas the reviewer must ensure that the author’s
output satisfies whatever macroscopic properties have been imposed on it, i.e. achieving fluency.
Recent corpus-based NLG systems (Langkilde and Knight, 1998) essentially embody this
architecture: a symbolic generator acts as the author, and a language model acts as the reviewer.

1.2.Vague communicative goals
Most NLG systems make two basic assumptions: that text generation is communicative goal-
driven, and that these goals are sufficient to dictate a top-down approach for the planning of the
text’s structure and decomposition of goals. However, Mellish et al. (1998b) claim there is a
class of NLG problems for which these basic assumptions do not apply. In the case of the ILEX
system, this is due to two factors. Firstly, as ILEX produces explanation labels of jewelry items
on display, there is often no clear plan or goal to be conveyed beyond “say something coherent
and interesting about this artifact within the space available”. Secondly, ILEX can not plan far
in advance, as it has to generate text in real-time based on the user’s choices.

The alternative approach they adopt is opportunistic planning, whose key elements are
interleaving of planning and execution, flexible choice of tasks from an agenda, expanding
“sketchy plans” as needed, taking into account the current state of the world, and recognition of
opportunities through detection of reference features.

2. Using genetic algorithms to do NLG
In addressing the above issues, we advocate treating the NLG process as a constraint
satisfaction problem, where a solution is a text that satisfies multiple interdependent constraints
relating to various levels of linguistic representation, e.g. semantic, syntactic, pragmatic,
stylistic. Finding such a solution requires searching a space that is undoubtedly immense. Our
proposed solution is to employ the genetic algorithm (GA), a widely-used heuristic search
strategy that relies on random traversal of a search space with a bias towards more promising
solutions. Specifically, it evolves a population of individuals over time, through an iterative
process of evaluation, selection, and evolution. Upon termination, the fittest individual is hoped
to be an optimal, or near-optimal, solution (Bäck et al., 1997).

Using GAs to do NLG has been done before, e.g. Mellish et al. (1998a). However, these
previous attempts employed GAs as optimisation functions for specific subtasks of NLG. We
believe that handling the entire NLG process through GAs opens up the potential for various
flexible approaches, which we discuss in Section 2.1. In particular, employing GAs allows a
measure of opportunistic planning (Section 1.2), where the evolutionary cycle enables fitness
functions to recognize opportunities and provide feedback to the executor, i.e. genetic operators.

Finally, we note that using genetic algorithms for NLG also reflects a discriminative model of
generation, where domain knowledge is stated declaratively, i.e. what a good text should look
like instead of how to write one (cf. the corpus-based systems in Section 1.1).

2.1.Representing linguistic constraints and the encoding of domain knowledge
When using GAs for NLG, a solution is a text that must achieve fluency and fidelity goals.
These goals can be expanded as a set of constraints to be satisfied by a text, e.g. it must be
grammatical, it must convey some given meaning, it must be readable, etc.

There are two ways constraints can be implemented: ensuring that all possibly evolvable
solutions never violate the constraint, or imposing penalties on individuals that violate a
constraint. There is a trade-off: the former approach is obviously ideal, but its intractability is
often the very reason GAs are employed in the first place. On the other hand, imposing

 273

excessively heavy penalties often leads to premature convergence on the first found well-formed
solution, whereas if the penalties are too light, the GA may continue to evolve ill-formed
solutions that score better than well-formed ones.

Within this framework, there is large scope for flexibility in terms of where domain-specific
knowledge is encoded to help satisfy these constraints. For NLG, it seems reasonable to assume
that candidate solutions must at least be grammatically well-formed.

Oberlander & Brew’s author-reviewer model specifies that the author focuses on achieving
fidelity, whereas the reviewer focuses on maximizing fluency goals. In GAs, this suggests
devising genetic operators that explicitly work towards realising some input semantics, and
fitness functions that measure fluency factors such as readability, length, coherence, etc.

However, other setups are possible. For instance, one could envisage an author (genetic
operator) concentrating on fluency whilst a separate reviewer (fitness function) assessed the
output for fidelity, or a pair of reviewers assessing a document of grammatical nonsense1, each
concentrating on fluency and fidelity respectively. Such approaches may seem unnecessarily
awkward for conventional NLG tasks, but may provide a more suitable platform for NLG
systems without well-defined communicative goals (see Section1.2).

Note that the various components, i.e. the ensemble of authors and reviewers, can more or less
be defined independently of each other, modulo the need for a common representation of a
candidate text. This addresses the “engineering argument”, one of the main arguments
supporting the pipeline architecture as opposed to an integrated architecture (Reiter, 1994), i.e.
it enables a modular decomposition of an NLG system, thus resulting in a more manageable
implementation.

3. Linguistic representation
Our system represents candidate texts as lexicalized tree adjoining grammar (LTAG) derivation
trees, augmented with the use of feature structures (Vijay-Shanker and Joshi, 1988). A
derivation tree can be seen as the basic formal object that is constructed during the course of
sentence generation from a semantic representation (Joshi, 1987). However, derivation trees are
also the ideal data structure within our system for another reason, i.e. the non-monotonic
structure building nature of GAs. Since the genetic operators may involve randomly altering
subtrees through subtree deletion and swapping, we must somehow undo the unification of
certain feature structures. Using the derivation tree as our primary data structure, we are able to
store all local feature structures in their respective elementary trees (cf. Kilger (1992)). When
required, e.g. to evaluate certain properties of the resulting text, the derived tree is rebuilt.
Redundant computation is minimized by reusing a cached derived tree if it has not been
modified between iterations.

Within evolutionary theory, the LTAG derivation tree can be viewed as the genotypic
representation of candidate solutions, from which we can compute the phenotypic information
of semantic (Section 5.2) and prosodic (Section 5.1) features via the derived tree.

We adopt a simple ‘flat’ semantic representation that is often used in NLG (Koller and
Striegnitz, 2002). A semantic expression is a set of first order logic literals, which is logically
interpreted as a conjunction of all its members. The arguments of these literals represent domain
concepts such as objects and events, while the functors state relations between these concepts.
See Section 5.2 for some examples.

The semantic form of a tree is the union of the semantic expressions of its constituent
elementary trees, with binding of variables during substitution and adjunction to control
predicate-argument structure; cf. Stone et al. (2001).

Finally, since our system requires information on prosody, each word is associated with its
phonetic spelling, taken from the CMU pronouncing dictionary2.

1 As produced by a statistical language model, or by some combination of monkeys and typewriters.
2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

 274

4. Genetic operators for NLG
Genetic operators are functions that are stochastically applied to candidate solutions to explore
alternative solutions. In essence, they define the search space. When designing operators for our
system, the following desiderata were considered:
1. Grammaticality: The operators should ensure that syntactic well-formedness of the

candidate texts be preserved. This suggests that genetic operators be based on the
derivational rules of the underlying grammatical formalism (LTAG).

2. Non-monotonicity: As operators are stochastically applied, it is highly improbable that
optimal texts can be constructed using monotonic structure-building operators alone. Rather,
they are typically built through the trial and error design mechanism that evolution affords.
Therefore, one or more non-monotonic operators must facilitate this, such as deletion,
replacement, and swapping of substructures.

3. Incrementality: Constructing texts in an incremental fashion enables the generation process
to benefit from the guiding hand of evolution. The appropriate granularity of operator
incrementality is an open question. Furthermore, incomplete derivations may conflict with
requirements of grammaticality.

Within our framework, several sets of operators were implemented.

4.1.Baseline operators
Existing work in genetic programming defines genetic operators on tree data structures, such as
grow, which randomly selects a leaf from a tree and replaces it with a randomly generated new
subtree, shrink, which does the opposite, and switch, which randomly selects two nodes and
swaps their position.

Within the context of NLG, although it seems obvious to perform such structural
manipulations on phrase structure trees, we argue that they are most appropriately applied to the
LTAG derivation tree instead. This maintains the syntactic principle of well-formed LTAG
structures being constructed through valid compositions of elementary trees using the operations
of substitution and adjunction. The BLINDADD operator adds a node in the derivation tree;
variants exist for both substitution and adjunction. The BLINDDELETE operator removes a node
in the derivation tree, along with the subtree that it dominates. Finally, the BLINDSWAP operator
swaps the positions of two subtrees, either belonging to the same derivation tree, resulting in
mutation, or to another derivation tree, resulting in crossover.

These baseline operators, while grammatically sound (in particular, all involved feature
structures must license the operation), are oblivious to fidelity and fluency goals. Consequently,
they indiscriminately add, delete, and swap both good and bad content, delegating judgments of
quality to the fitness evaluation functions.

4.2.Semantically motivated operators
Given the task of generating the sentence “John loves Mary”, it seems absurd that an NLG
system would attempt to add content concerning, say, Greek archaeological artefacts or medical
conditions, yet this is an entirely possible scenario given the baseline operators above.

Accordingly, we implemented a set of operators that deliberately attempts to bring the
semantics of a candidate text closer to that of some pre-defined input semantics. This is
precisely the task of surface realisation in NLG, and our approach is reminiscent of Nicolov
(1998) and Stone et al. (2001).

Our “semantically smart” operator, SMARTADD, explicitly tries to realise some portion of the
input semantics S, specifically that which has not yet been realised, while simultaneously
maintaining syntactic well-formedness. Nicolov calls this gradual process the consumption of
semantics. Conversely, SMARTDELETE will only consider removing elementary trees whose
lexical semantics are extraneous with respect to S, and SMARTSWAP will only consider
swapping subtrees that preserve the predicate argument structure represented by S.

 275

Such operators require a way of reasoning about the relationship between the input semantics
and the semantics conveyed by the candidate text, i.e. which portion of the input semantics has
been realised, and which portion of the candidate text semantics indeed realises the input, or is
extraneous. This is achieved using the semantic mapping algorithm discussed in Section 5.2.

5. Fitness functions for NLG
In GAs, the fitness function is where the bulk of domain-specific knowledge and heuristics is
typically encoded. Specifically for NLG, the fitness function serves as a metric, or more
precisely a set of metrics, that measure whether a candidate text achieves the goals of fidelity
and fluency.

For our implemented system, we measured fidelity in terms of how well a candidate text
realised a given propositional input, and fluency in terms of how closely the rhythmic stress
patterns of a text matched a given poetic metre.

5.1.Metre similarity
Our system is tasked with conveying a given semantics as a text that exhibits a given metre. For
example, Fig. 1 shows the metre of Hillaire Belloc’s “The Lion”, with stressed syllables in bold
type, unstressed syllables in normal type, syllables extraneous to the underlying metre in italics,
and • indicating a ‘missing’ syllable.

The Lion, the Lion, he dwells in the waste,
He has a big head and a very small waist;

But his shoulders are stark, and his jaws they are grim,
And a good little child • will not play with him.

Figure 1: Metre pattern of Belloc’s “The Lion”

Our system represents metre patterns as a list of stress syllables notated as follows: w (‘weak’)

is an unstressed syllable, s (‘strong’) is a stressed syllable, x (‘wildcard’) is any syllable, and b
indicates a linebreak. Fig. 2 shows example notations for (a) a limerick, and (b) “The Lion”
(formatted into lines for readability purposes).

[w,s,w,w,s,w,w,s,b, [w,s,w,w,s,w,w,s,w,w,s,b,
w,s,w,w,s,w,w,s,b, w,s,w,w,s,w,w,s,w,w,s,b,

w,s,w,w,s,b, w,s,w,w,s,w,w,s,w,w,s,b,
w,s,w,w,s,b, w,s,w,w,s,w,w,s,w,w,s,b]

w,s,w,w,s,w,w,s,b]
(a) (b)

Figure 2: Encoding for (a) a limerick and (b) “The Lion”

Our metre evaluation function measures the degree of similarity between a given metre pattern
and the metre exhibited by a candidate text. To compute this, we use the well-known minimum
edit distance, in which the distance between two strings is the minimal sum of costs of
operations (symbol insertion, deletion, and substitution) that transform one string into another.
We have devised a suitable cost function that reflects our intuitions of metre. Since the edit
distance only accounts for context-free operations, we implemented a metre compensation
function to account for the fact that context can affect lexical stress, particularly in poetry.

Our metre evaluation function, , takes the value computed by the minimum edit
distance algorithm, adjusts it using our context-sensitive compensation scheme, and normalizes
it to the interval [0,1]. Table 1 shows values for various candidate texts, against the
target form in Fig. 2(b). The first is Belloc’s actual poem, which itself contains some metrical
imperfections; the second is a limerick by Edward Lear; the third is an extract from an academic
text, containing roughly the correct number of syllables; the last is chosen for its
inappropriateness. The scores do not conflict with our intuitions of poetic metre.

 276

Table 1: Metre fitness for various texts

Candidate text
The Lion, the Lion, he dwells in the waste. He has a big head and
a very small waist. But his shoulders are stark, and his jaws they
are grim, and a good little child will not play with him.

0.787

There was an old man with a beard, who said, “it is just as i
feared! two owls and a hen, four larks and a wren, have all built
their nests in my beard!”

0.686

Poetry is a unique artifact of the human language faculty, with its
defining feature being a strong unity between content and form.

0.539

John loves Mary. 0.264

5.2.Semantic similarity
Following Love (2000), we propose two factors that must be considered: structural similarity

and conceptual similarity. Structural similarity measures the degree of isomorphism between
two semantic expressions. Conceptual similarity is a measure of relatedness between two
concepts (logical literals). We simply use the following: two concepts are the same if and only if
they share the same literal functor. However, one could envisage a refined approach using an
underlying ontology such as WordNet, or using statistical models of lexical semantics, e.g. LSA.

Computing a structural similarity mapping between two expressions is an instance of the NP-
complete maximal common subgraph problem. However, we have implemented a greedy
algorithm that serves our purposes and runs in , based on Gentner’s structure mapping
theory (Falkenhainer et al., 1989). It takes two sets of logical literals, and ,
and attempts to ‘align’ the literals. We then apply a function , normalised to [0,1], to
compute a score based on various aspects of the alignment; this is based on Love’s
computational model of similarity Love (2000).

Table 2 shows an example of computing semantic similarity for a selection of candidate texts
against a target semantics that represents the second line of Belloc’s “The Lion”, i.e. “[The lion]
has a big head and a very small waist”. The target semantic expression is as follows:

The first two texts convey a subset of the target; the third text conveys an altogether different
fact about the lion; the fourth text is purposely inappropriate; and the last text, conveys the
semantics of the first text in its object to the verb ‘love’. As with our metre similarity function,
we believe that the scores roughly approximate human intuitions.

Table 2: Semantic fitness for various texts

Candidate text Candidate semantics
The lion has a big head {lion(_,L), own(_,L,H), head(_,H), big(_,H)} 0.525
The lion has a head and a
waist

{lion(_,L), own(_,L,H), head(_,H), own(_,L,W),
waist(_,W)}

0.598

The lion dwells in the
waste

{lion(_,L), dwell(D,L), inside(_,D,W), waste(_,W)} 0.078

John loves Mary {john(_,J), love(_,J,M), mary(_,M)} 0.0451
John and Mary love the
lion’s big head

{john(_,J), love(_,J,H), mary(_,M), love(_,M,H),
lion(_,L), own(_,L,H), head(_,H), big(_,H)}

0.389

6. Testing and discussion
Throughout our testing, we employed proportionate selection, which assigns a distribution that
accords parents a probability to reproduce that is proportional to its fitness. Individuals are
sampled from this distribution using stochastic universal sampling, which minimises chance
fluctuations in sampling. To reduce the chances of premature convergence or stagnation, we

 277

used an elitist population of 20% of the entire population (the latter being 40). See Bäck et al.
(1997) for a review of these issues. Each test was run five times, and each run lasted for 500
iterations. The three mutation operators used, along with their probabilities, were substitution
(0.5), adjunction (0.3), and deletion (0.2). For crossover, the subtree swapping operator was
used. The probabilities of applying genetic operators were = 0.6, = 0.4, for
both the “blind” and “smart” variants. A small handcrafted grammar and lexicon was used, with
33 elementary trees and 134 lexical items, 28 of which were closed class words. Most of the
content words were taken from Belloc’s “The Bad Child’s Book of Beasts”.

6.1.Fluency and fidelity generation
In this test, we measured the ability of our system to generate texts that simultaneously achieve
fidelity and fluency goals. We took a very simple approach to combining the metre similarity
and semantic similarity functions – the arithmetic mean of their scores, i.e.

The target metre was that of a limerick, as in Fig. 2(a). The target semantics was a

representation of the first two lines of “The Lion” (Fig. 1), with a slight alteration where the
original opening noun phrase “The lion, the lion” was replaced with “The african lion”. The
target semantic expression is as follows:

Two variants of the test were conducted: one with the baseline ‘blind’ operators and one with
the semantically-aware ‘smart’ operators.

Table 3 shows the highest-scoring candidate from the blind operator test. The text is metrically
perfect. However, the unmapped literals show that the text fails to convey three
concepts, i.e. that the lion is african, that its head is big, and that the waist is very small.

Table 3: Solution for blind operators tests

Fitness score:
0.81
Text:
A lion, it dwells in a waste.
A lion, it dwells in a waste.
A waste will be rare.
Its head will be rare.
Its waist, that is small, will be rare.
Unmapped :
{african(_1, l), big(_6,h), very(_9, s)}
Unmapped :
{rare(_33,_34), will(_35,_36), waste(_37,_34), dwell(_38,_39),
lion(_40,_39), inside(_41,_38,_42), waste(_43,_42), rare(_44,_45),
will(_49,_50), rare(_51,_52), will(_55,_56)}

Table 4 shows the highest-scoring candidate from the smart operators test. Although the fitness
score is very similar to the one in Table 3, the characteristics of the text are markedly different.
The smart operators, which increase bias towards semantics, have a detrimental effect on the
metre. Unlike the metrically perfect limerick in Table 3, this text requires several edit
operations: 2 insertions and 2 deletions (even Belloc’s original poem contains similar rhythmic
imperfections – see Section 5.1). However, it does a better job of conveying , only
failing to convey the fact that the waist is very small, whilst also conveying fewer extraneous
semantics (most of which are repetitions of correct semantics).

Table 4: Solution for smart operators test

 278

Fitness score:
0.83
Text:
A very • african lion,
who is african, dwells in a waste.
Its head, that is big,
is very • big.
A waist, that is its waist, it is small.
Unmapped :
{very(_9, s)}
Unmapped :
{very(_137,_135), big(_141,_136), waist(_145,_143), very(_153,_152),
african(_154,_140)}

6.2.Line by line generation
In this test, we had our system generate each line of a limerick individually. The purpose is to

see whether the system can perform better given a simpler task. We also based this test on a
different limerick to show the flexibility of the system.The new input is shown in Table 5. Note
that the target metres represent an ideal limerick. The “gold standard” limerick itself is
metrically imperfect.

Table 5: Buller’s original limerick as individual lines.

Line 1: There was a young lady called Bright.

[w,s,w,w,s,w,w,s,b]
Line 2: She could travel much faster than light.

[w,s,w,w,s,w,w,s,b]
Line 3: She set out one day in a relative way.

[w,s,w,w,s,w,s,w,w,s,b]
Line 4: She returned on the previous night.

[w,s,w,w,s,w,w,s,b]

Table 6 shows the best solution obtained by trying to generate the whole limerick at once, as

in previous tests, whereas Table 7 collects the results of generating each individual line. In the
latter case, the resulting limerick is metrically much better than the former, as there are only two
edits compared to five. Both of these generated texts are metrically superior to the original.

Table 6: Solution for entire limerick.

Fitness score:
0.69
Text:
A lady could be on an evening,
that could be preceding, one day.
A young lady called Bright,
who set out one day,
travelled much faster than light.
Unmapped :
{can(_6, t), relative(_7, le), return(r, l)}
Unmapped :
{oneday(_199,_210), lady(_201,_197),can(_221,_207),can(_228,_213)}

Table 7: Collected solution for individual lines.

 279

Fitness score:
Line 1: 0.82, Line 2: 0.66, Line 3: 0.78, Line 4: 0.86
Text:
A lady called Bright could be young.
She travelled. The light could be light.
She set out one day. She set out one day.
She is on a previous night.
Unmapped :
{travel(t, l), faster(f, t, li), much(_1, f), relative(_0, le), {return(r, l)}
Unmapped :
{can(_57,_81), {light(_527,_524), travel(_603,_536), {leave(_359,_323),
oneday(_333,_359)}

However, the system fails to satisfy the semantics, and in fact does worse in the latter case, as

there are five unmapped literals as opposed to three. This suggests that, particularly
given the smaller task of individual line generation, our evaluation function is not guiding the
GA to optimize semantics as well as it is for metre. We attempt to address this in the final test.

6.3.Evaluation weighting
The results in the preceding test suggest that the evaluation function is biased towards metre
optimisation. In our final test, we simply modified the linear combination by doubling the
weight of semantic fitness as follows:

Table 8 collects the results of generating each individual line using the modified evaluation

function. We believe this text is definitely an improvement over the ones in Tables 6 and 7, and
most closely resembles the original limerick in Table 5. Note that semantically it only lacks 2
target literals and only has 1 extraneously conveyed literal. Metrically, it requires 9 edits.
Subjectively, however, we believe it still scans reasonably well as a limerick.

This suggests that semantic fitness should carry more weight than metre fitness, perhaps
reflecting the intuition that fidelity is more of a ‘harder’ constraint than fluency is.

Table 8: Collected solution, modified fitness

Fitness score:
Line 1: 0.78, Line 2: 0.79, Line 3: 0.95, Line 4: 0.76
Text:
There is a young lady called Bright.
She will travel much faster than light.
She set out one day * relatively.
She is on a preceding * night.
Unmapped :
{can(_2, t), return(r, l)}
Unmapped :
{will(_409,_415)}

7. A (Speculative) Summary
We have proposed a flexible author-reviewer model for performing NLG that is based on GAs
to address the two issues presented in Section 1.

We then presented details of an implemented instance of this model, which specifically aims
to convey a given semantics as a text that satisfies a given metre pattern. Through a series of
small tests, we showed that it has the potential to satisfy the interdependent goals of fidelity and
fluency (compare in particular, the output in Table 8 with the gold standard in Table 5).

 280

As implemented, our system does not really address the difficulty of generation when the
communicative goal is vague: the semantic similarity function (Section 5.2) still requires an
existing propositional input. However, one can envisage other measures of fidelity that account
for notions of coherence, interestingness, consistency. As for fluency, one could replace our
very specific metre similarity function with a declarative model of, for instance, readability,
document length, personality, and language complexity.

References
Back, T., D. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation.

Oxford University Press and Institute of Physics Publishing, 1997.
Falkenhainer, B., K. D. Forbus, and D. Gentner. The structure-mapping engine: Algorithm and

examples. Artificial Intelligence, 41:1–63, 1989.
Joshi, A. K. The relevance of tree adjoining grammars to generation. In G. Kempen, editor,

Natural Language Generation: New Results in Artificial Intellligence, pages 233–252.
Martinus Nijhoff Press, Dordrecht, The Netherlands, 1987.

Kilger, A. Realization of tree adjoining grammars with unification. Technical Report TM-92-08,
DFKI, Saarbr¨ucken, Germany, 1992.

Koller, A. and K. Striegnitz. Generation as dependency parsing. In Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics, Philadelphia,
USA, July 2002.

Langkilde, I. and K. Knight. Generation that exploits corpus-based statistical knowledge. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics, pages 704–710,
Montreal, Canada, August 1998.

Love, B. C. A computational level theory of similarity. In Proceedings of the 22nd Annual
Meeting of the Cognitive Science Society, pages 316–321, Philadelphia, USA, August
2000.

Mellish, C., A. Knott, J. Oberlander, and M. O’Donnell. Experiments using stochastic search for
text planning. In Proceedings of the Ninth International Workshop on Natural Language
Generation, Niagara-on-the-Lake, Canada, 1998a.

Mellish, C., M. O’Donnell, J. Oberlander, and A. Knott. An architecture for opportunistic text
generation. In Proceedings of the Ninth International Workshop on Natural Language
Generation, Niagara-on-the-Lake, Canada, 1998b.

Meteer, M. Bridging the generation gap between text planning and linguistic realisation.
Computational Intelligence, 7(4):296–304, 1991.

Nicolov, N. Approximate Text Generation from Non-Hierarchical Representations in a
Declarative Framework. PhD thesis, Department of Artificial Intelligence, University of
Edinburgh, Edinburgh, UK, 1998.

Oberlander, J. and C. Brew. Stochastic text generation. Philosophical Transactions of the Royal
Society of London, Series A, 358:1373–1385, 2000.

Reiter, E. Has a consensus on NL generation appeared? and is it psycholinguistically plausible?
In Proceedings of the Seventh International Natural Language Generation Workshop,
pages 163– 170, Kennebunkport, USA, April 1994. Springer-Verlag.

Stone, M., C. Doran, B. Webber, T. Bleam, and M. Palmer. Microplanning with communicative
intentions: The SPUD system. Technical Report TR-65, Rutgers University Center for
Cognitive Science, New Jersey, USA, 2001.

Vijay-Shanker, K. and A. K. Joshi. Feature structure based tree adjoining grammars. In
Proceedings of 12th International Conference of Computational Linguistics, pages 714–
720, Budapest, Hungary, August 1988.Blackburn, P. and J. Bos. 2005. Representation
and Inference for Natural Language: A First Course in Computational Semantics. CSLI
Publications.

 281

