
N T T D A T A : D E S C R I P T I O N OF T H E E R I E S Y S T E M
U S E D F O R M U C - 6

Yoshio Eriguchi and Tsuyoshi Kitani
N T T D a t a Co mmun i ca t i ons Sys t ems Corpo ra t i on

K o w a Kawasak i Nishi-guchi Bldg., 66-2 Horikawa-cho, Saiwai-ku, Kawasaki-shi ,
K a n a g a w a 210 J a p a n

E-mail: {eriguchi, tk i tani} @l i t . rd .n t tda ta . jp
Phone: +81-44-548-4606

1 I N T R O D U C T I O N

Erie is a name recognition system developed
for the Multilingual Entity Task (MET) in MUC-6.
The pattern matching engine recognizes organiza-
tion, person, and place names along with time and
numeric expressions in Japanese text. Although
our previous information extraction system Tex-
tract performed well in MUC-5, the pattern match-
ing engine, which was written in AWK language,
was slow[2]. System maintenance was also difficult,
since the patterns were defined in both the match-
ing engine and the pattern files. Erie solves these
problems by generating a pattern matching engine
in C language directly from the defined patterns.

2 S Y S T E M D E S C R I P T I O N

Figure 1 shows Erie's system architecture, which
includes the following functions:

s ~ Comptle I * .

• Pre-processlng , ~ IGeneratorof l • Pattern ~ , .
I a ~ I I Pattern | = I Matching | I stage
IRecoonitionf-I Matching r -T ' '] Program / ; .Pat erns I Engine I CSourc Cod :

Figure 1 Erie system architecture

(1) Majesty is used to segment the Japanese text
into primitive words and tags the parts of
speech[l].

(2) Task-specific patterns are defined to modify
the Majesty segmentation and to augment
the parts of speech.

(3) Name recognition patterns can be defined in
a form similar to regular expressions.

(4) An engine generator converts the defined pat-
terns into a pattern matching program gen-
erated in C language.

(5) Abbreviations in the text are identified by an
abbreviation recognizer.

3 P A T T E R N S

This section describes three types of patterns
introduced in the previous section.

3 .1 D i c t i o n a r y p a t t e r n s
Majesty tags a part of speech, such as a noun

or noun-suffix, as the major category of the word.
Then the dictionary pattern is used to add a sub-
category to the word. The sub-category, for ex-
ample that it is an organization, is defined on the
left side of the pattern. Words to which the sub-
category is added are listed on the right side of the
pattern. Figure 2 shows an example of a dictio-
nary pattern. The words "~J:" (a corporation) and
"~" (a government ministry) are tagged as noun-
suffixes (SUFFIX) by Majesty, while the dictionary
pattern augments it by adding ORGANIZATION
as its sub-category.

DICTIONARY -[
SUFFIX-ORGANIZATION = {~_~I -~]"

Figure 2 Example of a dictionary pattern

3 .2 S e g m e n t a t i o n l J a t t e r n s
The segmentation pattern is used to further

segment a word whose word boundary is given by
Majesty. The word to be segmented is written on
the left side of the pattern. Newly-segmented words
and their parts of speech are defined in the right
side of the pattern. The pattern matching con-
ditions of the matched word can be described in
parenthesis. These conditions can be the part of
speech of the word, the word preceding or follow-
ing the word, or the word length. The character

469

'_' is a wild card that can match any number of
characters within the word.

Figure 3 shows an example of the segmentation
patterns. The first pattern divides a word "1~:~¢"
(Japan and the U.S.) into "H" (Japan) and ")1¢"
(the U.S.), and gives each word a NOUN-PLACE
tag as the part of speech. The second pattern di-
vides a word whose last character is "~tt" (a govern-
ment minister) into "~11" and the rest of the word,
if the word consists of more than three characters.

SEGMENTATION {
~ = ~ :NOUN-PLACE ~:NOUN-PLACE
{};

_ ~ = _:NOUN-ORGANIZATION
: SUFFIX-POSITION

{LEN >= 3};
}

F i g u r e 3 Example of segmentation patterns

3 . 3 N a m e r e c o g n i t i o n p a t t e r n s

The name recognition patterns recognize proper
names, times, and numeric expressions that appear
in the text. A pattern name is written on the left
side of the pattern, and the word sequence to be
searched for is defined on the right side. The de-
fined pattern can be referred to from other patterns
by using the character '$' followed by the pattern
name. A pattern can be any combination of words,
their parts of speech, character type, and the pat-
tern name. Regular expressions such as '*' and '+ '
can also be used in the pattern. Two angle brack-
ets on the right side of the pattern specify the first
and last of the words that comprise the identified
name or expression. Figure 4 shows an example of a
name recognition pattern that identifies a person's
n a m e .

PATTERN {
SPERSON = < (NOUN I UNKNOWN)+ >

SUFFIX-PERSON;
}

Figure 4 Example of a name recognition pattern

Erie's pattern matching engine processes the
patterns in the order of definition. The first pat tern
that matches is chosen for the string currently be-
ing processed. Thus, pattern developers must pay
special attention to the order of the patterns.

4 P A T T E R N S D E F I N E D I N E R I E

There are 54 dictionary patterns, 86 segmenta-
tion patterns, and 162 name recognition patterns
defined in Erie. The pattern set was developed by

using a hundred newspaper articles annotated and
provided to the MET participants by DARPA.

During its official run on a Sun SparcStation
10, Erie processed each article in an average of 1.5
seconds. This is several times faster than Textract.
But, entity names, especially person names, were
not identified well, although time and numeric ex-
pressions were identified with a high level of recall
and precision. This was probably because the pat-
terns for entity names were not well enough de-
fined. Since names can be expressed in many ways,
a hundred newspaper articles used for the pattern
development were insufficient.

5 O B S E R V A T I O N S

Erie achieved a high processing accuracy in the
Japanese MET task. In the course of this project,
most of our time was spent on the development of
the engine generator. Considering that the pattern
development was done in only two weeks, our scores
are quite satisfactory. This was achieved by sepa-
rating the patterns and pattern matching engine,
which has made the pattern development faster and
easier. The pattern definition in Erie was power-
ful enough to identify the names and expressions
required in the MET task.

The pattern development was mainly done by
hand, which is very time-consuming. To develop
systems more rapidly, tools are needed that will
help pattern developers find and define patterns,
then check the results. We will continue to work
towards this goal and plan to improve our pat-
tern matching engine to deal with more compli-
cated patterns that Erie cannot currently handle.

R e f e r e n c e s

[1] Kitani, T., Eriguchi, Y. and Hara, M. "Pat-
tern Matching and Discourse Processing Infor-
mation Extraction from Japanese Text." Jour-
nal of Artificial Intelligence Research, Vol. 2,
pp. 89-110, 1994.

[2] Kitani, T. and Mitamura, T. "An Accurate
Morphological Analysis and Proper Name Iden-
tification for Japanese Text Processing." Jour-
nal of Information Processing Society of J apart,
35(3), pp. 404-413, 1994.

470

