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A B S T R A C T  

This paper presents results from a study comparing human perfor- 
mance on the text of natural language information extraction with 
that of machine extraction systems that were developed as part of 
the ARPA Tipster program. Information extraction is shown to be 
a difficult task for both humans and machines. Evidence for one set 
of text material, English Microelectronics, indicated that a human 
analyst produces about half the errors as does machine systems. 

I N T R O D U C T I O N  

In evaluating the state of technology for extracting informa- 
tion from natural language text by machine, it is valuable to 
compare the performance of machine extraction systems 
with that achieved by humans performing the same task. 
The purpose of this paper is to present some results from a 
comparative study of human and machine performance for 
one of the information extraction tasks used in the Tipster/ 
MUC-5 evaluation that can help assess the maturity and 
applicability of the technology. 

The Tipster program, through the Institute for Defense 
Analyses (IDA) and several collaborating U.S. government 
agencies, produced a corpus of filled "templates" --StlUC- 
tured information extracted from text. This corpus was used 
both in the development of machine extraction systems by 
contractors and in the evaluation of the developed systems. 
Production of templates was performed by human analysts 
extracting the data from the text and structuring it, using a 
set of structuring rules for "filling" the templates and com- 
puter software that made it easier for analysts to organize 
information. Because of this rather extensive effort by ana- 
lysts to create these templates, it was possible to study the 
performance of humans for this task in some detail and to 
develop methods for comparing this performance with that 
of machines participating in the Tipster/MUC-5 evaluation. 

The texts that the templates were filled from were newspa- 
per and technical magazine articles concerned either with 

joint business ventures or microelectronics fabrication tech- 
nology. Each topic domain used text in two languages, 
English and Japanese. This paper discusses preparation of 
templates and presents detailed results for human and 
machine performance; a shorter paper [1] discusses prepa- 
ration of templates and basic results. 

The primary motivation for this study was to provide reli- 
able data that would allow machine extraction performance 
to be compared with that of humans. The MUC and Tipster 
programs have included extensive efforts to develop mea- 
surements that can objectively evaluate the performance of 
the different machine systems. However, although these 
measures are capable of reliably discriminating between the 
performance of different machine systems, they are not very 
useful by themselves in evaluating how near the technology 
is to providing reliable performance and the extent to which 
it is ready to be used in applications. Sundheim [2] initiated 
human performance study for extraction by providing esti- 
mates of human performance for the task used in the MUC- 
4 evaluation; the present study provides human data for the 
Tipster/MUC-5 evaluation that was produced under rela- 
tively controlled conditions and with methods and statistical 
measures that assess the reliability of the data. 

A second motivation for the study was for its value in help- 
ing produce better quality templates so as to allow high- 
quality system development and reliable evaluation. The 
quality and consistency of the templates being produced 
were monitored as analysts were trained and gained experi- 
ence, and particular efforts were made to identify the causes 
of errors and inconsistency so as to develop strategies for 
reducing error and increasing consistency. 

A third motivation for studying human performance was to 
better understand the nature of the extraction task and the 
relative performance of humans compared with machines 
on different aspects of the task. Such an understanding can 
particularly help in the construction of human-machine 
integrated systems that are designed to make the best use of 
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what are at the present time rather different abilities of 
humans and machines [3]. 

This paper is organized as follows: 

The paper begins with a discussion of how the templates 
were prepared, with particular emphasis on the strategies 
that were used that served to minimize errors and maximize 
consistency, including detailed fill rules, having more than 
one analyst code a given template, and the use of software 
tools with error detection capabilities. 

The paper next describes the results of an investigation into 
the extent to which template codings made by analysts that 
are playing different roles in the production of a particular 
template influence the resulting key, which provides clues to 
the effectiveness of the quality control strategies used in the 
template preparation process. 

The results of an experimental test of different methods of 
scoring human performance are then presented, with the 
goal of selecting a method that is statistically reliable, mini- 
mizes bias, and has other desirable characteristics. Data that 
indicates overall levels of human performance on the task, 
variability among analysts, and reliability of the data are 
then presented. 

The results of an investigation into the development of ana- 
lyst skill are then presented, with the significant question 
being the need to understand whether the performance levels 
being measured truly reflect analysts who have a high level 
of skill. 

The performance of humans for information extraction is 
then compared with that of machine systems, in terms of 
both errors and metrics that attempt to separate out two dif- 
ferent aspects of performance, recall and precision, 

The results of a study comparing the effect of key prepara- 
tion on the evaluation of machine performance are then pre- 
sented. This is particularly relevant to the question of how 
keys should be future MUC and Tipster evaluations. 

A study is then presented of the extent to which machines 
and humans agree on the relative difficulty of particular tem- 
plates. 

The results of a pilot study in which the performance of 
humans and machines is compared for particular kinds of 
information, to see what information machines are compar- 
atively worse or better than humans in extracting, is then 
presented. 

A final section of the paper makes some general conclusions 
about the results and their implications for assessing the 
maturity and applicability of extraction technology. 

T H E  P R E P A R A T I O N  O F  T E M P L A T E S  

The development of templates for the English Microelec- 
tronics corpus began in the fall of 1992. It began with an 
interagency committee that developed the basic template 
structure and, when ~t had evolved to the point that ~t was rel- 
atively stable, two experienced analysts were added to the 
project so that they could begin training toward eventual 
production work. About two months after that, two more 
production analysts joined the project. 

The template structure was object-oriented, with a template 
consisting of a number of objects, or template building 
blocks with related information. Each object consisted of 
slots, which could be either fields containing specific infor- 
mation or pointers, that is, references, to other objects. Slot 
fields can either be set fills, which are filled by one or more 
categorical choices defined for that field, or by string fills, in 
which text is copied verbatim from the original article. In 
cases of ambiguity, analysts could provide alternative fills 
for a given slot. In addition, analysts could include com- 
ments when desired to note unusual problems or explain why 
a particular coding was selected. Comments were not scored 
and were primarily used when analysts compared two or 
more codings of a given article to determine which was the 
more correct. For more information on the template design 
see [4]. Also see [5] for a discussion of selection of the arti- 
cles in the corpora and preparation of the data, and [6] for a 
discussion of the different extraction tasks, domains, and 
languages. 

Previous experience with the English and Japanese Joint 
Ventures corpus had made it clear that producing templates 
with a high degree of quality and consistency is a difficult 
and time-consuming task, and we attempted to make the best 
use of what had been learned in that effort in producing tem- 
plates for English Microelectronics with quality and consis- 
tency appropriate to both the needs of the project and the 
resources we had available. 

"Quality" refers to minimizing the level of actual error by 
each analyst. "Error" includes the following: (1) Analysts 
missing information contMned in or erroneously interpreting 
the meaning of an article; (2) Analysts forgetting or misap- 
plying a fill rule; (3) Analysts misspelling a word or making 
a keyboarding (typographical) error or the analogous error 
with a mouse; and (4) Analysts making an error in construct- 
ing the object-oriented structure, such as failing to create an 

180 



object, failing to reference an object, providing an incorrect 
reference to an object, or creating an extraneous object. 

"Consistency" refers to minimizing the level of legitimate 
analytical differences among different analysts. "Legitimate 
analytical differences" include the following: (1) Different 
interpretations of ambiguous language in an article; (2) Dif- 
ferences in the extent to which analysts were able or willing 
to infer information from the article that is not directly stat- 
ed; and (3) Different interpretations of a fill rule and how it 
should be applied (or the ability or willingness to infer a rule 
if no rule obviously applies). 

To improve quality and consistency, three steps were taken: 

Development of Fill Rules 

First, a set of relatively detailed rules for extracting informa- 
tion from articles and structuring it as an object-oriented 
template was developed (with the rules for English Micro- 
electronics a 40-page, single-spaced docamen0. These rules 
were created by a group of analysts who met periodically to 
discuss problems and to agree on how to handle particular 
cases via a general rule. One person (who was not one of the 
production analysts) served as the primary person maintain- 
ing the rules. Because of the highly technical nature of the 
topic domain, an expert in microelectronics fabrication also 
attended the meetings and resolved many problems that 
required technical knowledge. 

Coding by Multiple Analysts 

The second step was the development of a procedure in 
which two analysts participated in coding nearly half of the 
articles, and the reconciliation of different codings to pro- 
duce final versions. For 300 articles in a "high quality" 
development set and for the 300 articles in the test set, the 
following procedure was followed: Two analysts first inde- 
pendently coded each article, with the resulting codings pro- 
vided to one of these same analysts, who produced a final 
version, or "key". The remaining 700 development tem- 
plates were coded by only one analyst, with each of four 
analysts coding some portion of the 700 articles. The pur- 
pose of the two-analyst procedure was to correct inadvertent 
errors in the initial coding and to promote consistency, by 
allowing the final analyst to change his or her coding after 
seeing an independent coding by a different analyst. The 
procedure also promoted consistency in the long run by pro- 
viding analysts with examples of codings made by other 
analysts so that they could see how other analysts handled a 
given problem. It also helped improve the fill rules by allow- 
ing analysts to detect recurring problems that could be dis- 
cussed at a meeting and lead to a change in the fill rules. 

Software Support Tools 

The third step was the development of software tools that 
helped analysts to minimize errors, detect certain kinds of 
errors, and support the process of comparing initial codings. 
One such tool was the template-filling tool developed by Bill 
Ogden and Jim Cowie at New Mexico State University 
(known as Locke in the version designed for English Micro- 
electronics). This tool, which runs on a Sun workstation and 
uses the Xwindows graphical user interface, provided an 
interface that allowed analysts to easily visualize the rela- 
tionships among objects and thus avoid errors in linking 
objects together. The tool also allowed analysts to copy text 
from the original article by selecting it with a mouse, enter- 
ing it verbatim into a template slot, thus eliminating key- 
stroke errors. In addition, the Locke tool has checking 
facilities that allowed analysts to detect such problems as 
unreferenced or missing objects. A second tool was the Tip- 
ster scoring program (developed by Nancy Chinchor and 
Gary Dunca at SAIC [8]) which provided analysts making 
keys with a printout of possible errors and differences 
between the initial codings. Another program, written by 
Gerry Reno at the Department of Defense at Fort Meade, did 
final checking of the syntax of completed keys. 

The four analysts who coded templates all had substantial 
experience as analysts for U.S. government agencies. In all 
cases analysts making the keys were unaware of the identity 
of the analyst producing a particular coding. Analysts did 
often claim that they could often identify the analyst coding 
a particular article by the comments included in the template 
coding or the number of alternative fills added, although 
when this was investigated further it appeared that they were 
not necessarily correct in their identification. 

In addition to the templates and keys created for the devel- 
opment and test sets described above, a small number of 
codings and keys were made for the purpose of studying 
human performance on the extraction task. In February, 
1993, at about the time of the 18-month Tipster evaluation, 
a set of 40 templates in the development set were coded by 
all analysts for this purpose. Similarly, for 120 templates of 
the 300-template test set that was coded in June and July, 
1993 extra codings were made by the two analysts that 
would have not normally participated in coding those arti- 
cles, resulting in codings by all 4 analysts for 120 articles. 
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I N F L U E N C E  O F  A N A L Y S T S  P L A Y I N G  
D I F F E R E N T  R O L E S  O N  K E Y  

The two-analyst procedure for making keys used for English 
Microelectronics was intended as an efficient compromise 
between the extremes of using a single analyst and the pro- 
cedure that had been used for English Joint Ventures in 
which two analysts would independently make codings and 
provide the codings to a third analyst who would make a 
key. 

It is of interest to know whether this form of checking is 
achieving its intended result--that of improving the quality 
and consistency of templates. We can investigate this indi- 
rectly by measuring the level of influence analysts playing 
different roles (and producing different codings) have on the 
key that is produced. The question of influence is also of 
interest--as will be seen in the next section--for its impli- 
cations in understanding the characteristics of different 
methods for measuring human performance. 

To investigate this influence, data from the set of 120 tem- 
plates that all analysts coded were analyzed separately based 
on the role in the production of the key played by the partic- 
ular coding. Figure 1 shows the relationship between differ- 
ent codings and the analysts producing them. Analyst 1 
produces, based on the original article, what will be called 
here the primary coding of the article. Analyst 2 produces 
independently the secondary coding of the article. The pri- 
mary and secondary codings are then provided to Analyst 1, 
who produces the key. Analysts 3 and 4 also produce other 
codings of the article that have no effect on the key. Each 
analyst plays a particular role (Analyst 1, 2, 3, or 4) for 30 of 
the 120 templates. 

Note that when Analyst 1 uses the primary and secondary 
codings in making the final coding, or key, there is a natural 
bias toward the primary coding. This is primarily because 
Analyst 1 created that coding, but also because the analyst 
typically does not create the key from scratch with the Locke 
tool, but modifies the primary coding (probably reinforcing 
the tendency to use the primary coding unless there is a sig- 
nificant reason for changing it). 

Figure 2 shows the results of this analysis, with performance 
expressed in terms of error per response fill, as calculated 
with the methodology described by Nancy Chinchor and 
Beth Sundheim [7] and implemented by the SAIC scoring 
program [8]. All objects in the template were scored, and 
scoring was done in "key to key" mode, meaning that both 
codings were allowed to contain alternatives for each slot. 

ANALYST i SECONDARY 
2 CODING 

, 1-1 ANALYST CODING 
3 

ooo.-I 
Figure 1: Procedure for Coding Templates and Making 

Keys for the 120 Articles Coded by All Analysts 

(See the Appendix for details of producing the error scores 
and calculation of statistical parameters and tests.) 
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Figure 2: Error for Coding Compared with Key Depending 
upon Role of Coding in Making Key 

The data is shown for three conditions, with each condition 
reflecting the accuracy, in terms of percent error, of a coding 
playing a particular role (or no role) in producing a key. The 
conditions are: (1) error for the primary coding when mea- 
sured against the key (shown as an unfilled vertical bar); (2) 
error for the secondary coding when measured against the 
key (shown as a light gray vertical bar); and (3) error for oth- 
er codings when measured against the key (shown as a dark 
gray vertical bar). 

Also shown for all conditions in the form of error bars is the 
standard error of the mean. Because the mean shown is cal- 
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culated from a small sample it can be different from the 
desired true population mean, with the sample mean only the 
most likely value of the population mean. The standard error 
bars show the range expected for the true population mean. 
That mean can be expected to be within the error bars shown 
68% of the time. See the appendix for details about how the 
standard error of the mean was calculated. 

Figure 3 makes clear the role of different codings: the prima- 
ry coding is made by the analyst who also later made the key, 
while the secondary and other codings were made by other 
analysts. The primary and secondary codings are both used 
in making the key, while the other codings are not used. 

PRIMARY SECONDARY OTHER 

MADE 
BY 

USED 
IN 

Analyst who 
Also Later 
Made Key 

Used in 
Making 

Key 

Other 
Analyst 

Used in 
Making 

Key 

Other  

Analyst 

Not 
Used in 
Making 

Key 

Figure 3: Characteristics of Different Coding Roles 

The result (in Figure 2) that the primary coding when com- 
pared to the key shows a mean error considerably above zero 
indicates that analysts quite substantially change their cod- 
ing from their initial version in producing the key. Presum- 
ably, this results from the analyst finding errors or more- 
desirable ways of coding, and means that quality and consis- 
tency is improved in the final version. (All differences 
claimed here are statistically significant--see Appendix for 
details). 

The result that the secondary coding when compared to the 
key shows a mean error that is substantially above that of the 
primary coding condition indicates that the analyst's original 
(primary) coding does in fact influence the key more strong- 
ly than does the secondary coding (produced by another ana- 
lyst). At the same time, it is clear that the secondary coding 
does itself substantially influence the key, since the mean 
error for the secondary coding is substantially less than that 
for the ;'other" codings, which are not provided to the analyst 
making the key and thus have no influence on it. This pro- 
vides good evidence that analysts are indeed making use of 
the information in the secondary coding to a substantial 
extent. This probably resulted in an improvement in both 
quality and consistency of the templates above what would 
be the case if only a single coder (even with repeated check- 
ing) was used, although we do not have direct evidence of 
such improvement and the extent of its magnitude is not 
clear. 

METHODS FOR SCORING HUMAN 
PERFORMANCE 

Before human performance for information extraction can 
be effectively compared with machine performance, it is 
necessary to develop a method for scoring responses by 
human analysts. 

The problem of measuring machine performance has been 
solved in the case of the MUC-5 and Tipster evaluations by 
providing (1) high-quality answer keys produced in the man- 
ner described in the previous section; and (2) a scoring meth- 
odology and associated computer program. 

The primary additional problem posed when attempting to 
measure the performance of humans performing extraction 
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is that of "who decides what the correct answer is?" In the 
case of the English Microeleclronics analysts, the four ana- 
lysts whose performance we are attempting to measure 
became---once they had substantial Ixaining and practice-- 
the primary source of expertise about the task, with their 
knowledge and skill often outstripping that of others who 
were supervising and advising them. This made it especially 
difficult to measure the performance of particular analysts. 

We approached the problem of determining the best method 
for scoring humans empirically: We compared experimen- 
tally four different methods for sconng codings by human 
analysts. In general, the criteria is objectivity, statistical reli- 
ability, and a perhaps difficult-to-define "fairness" or plausi- 
bility of making appropriate comparisons, both between 
different human analysts and between humans and 
machines. 

In evaluating different scoring methods, the 120 templates in 
the Tipster/MUC-5 test set that had been coded by all four 
analysts were used. As was described in the previous sec- 
tion, keys for each template in this set were made by one of 
the analysts, using as inputs codings done independently by 
the analyst making the key and one other analyst. Each of 
the 4 analysts made keys for 30 of the 120 templates and also 
served as the independent analyst providing a coding to the 
analyst making the keys for a different set of 30 templates. 
In addition, for 60 of the 120 templates, a fifth analyst made 
a second key from codings made by the four analysts. 

Figure 4 shows data comparing the four sconng methods for 
each of the four analysts. The data is shown in terms of per- 
cent error, with all objects scored, and with "key to 
response" scoring being used. In key to response scoring, 
alternative fills for slots are allowed only in the key, but not 
in the coding being scored. Since in the data collected here, 
analysts did normally add alternative fills (since their goal 
was to make keys), these alternatives were removed before 
scoring, with the first alternative listed assumed to be the 
most likely one and thus kept, and others deleted. The pur- 
pose of using key-to-response scoring was so that the result- 
ing data could be directly compared with data from machine 
systems, which produced only one fill for each slot. Scoring 
was done in batch mode, meaning that human analysts were 
not used (as they are in interactive mode) to judge cases in 
which strings did not completely match. 

In the "All Analysts" condition, all 120 templates made by 
each analyst were scored, using as keys those made by all 4 
analysts (including the analyst being scored). In the "Other 
Analysts" condition, only templates that have keys made by 
analysts other than the analyst being scored were used in 
sconng each analyst (with each analyst having 90 templates 
of the 120 templates coded by that analyst scored). In the 

"Independent Analysts" condition, only templates for which 
the analyst being scored neither made the key nor produced 
a coding that was used as an input for making the key were 
used in scoring each analyst. (This resulted in from 30 to 80 
templates being scored for each analyst, depending upon the 
analyst.) In the "5th Analyst" condition, a 5th analyst made 
the answer keys (with 60 templates scored in this condition). 
This 5th analyst did not code production templates but was 
in charge of maintaining the fill rules and the overall man- 
agement of the English Microelectronics template coding 
effort. 

The "All Analysts" condition showed the most consistent 
performance across analysts, with a variance calculated from 
the means for each analyst of 1.82 (N=4). The "Other Ana- 
lysts" condition was nearly as consistent, with a variance of 
3.16. The "Independent Analysts" and "5th Analyst" condi- 
tions were much less consistent, with variances of 9.08 and 
30.19, respectively. The high variance of the "Independent 
Analysts" condition, however, resulted only from the perfor- 
mance of analyst D, who had a very small sample size, only 
30 templates. If analyst D is left out, the variance becomes 
only 0.32 for this condition. The high variability across ana- 
lysts for the 5th analyst could be a result either of the small 
sample size or, more likely, a tendency for the 5th analyst to 
code articles in a manner more similar to some analysts 
(especially analyst C) than others (especially analyst B). 

The subjective opinions of the analysts and their co-workers 
suggested that all English Microeleclxonics analysts here 
were generally at the same level of skill, which is consistent 
with the above data. (This was not true of the English Joint 
Venture analysts, for example, where both the data and the 
opinions of analysts and others suggested considerable vari- 
ability of skill among analysts.) However, it should be noted 
that all of the conditions in which analysts are being scored 
by other analysts run the risk of making the differences 
among analysts artificially low. Consider, for example, the 
case of a very skilled analyst being scored against a key 
made by an analyst who is poorly skilled. The more skilled 
analyst is likely to have some correct responses scored incor- 
reectly, while a less-skilled analyst may have his or her incor- 
rect responses scored as correct. However, the patterns of 
analyst skill elicited by the different scoring methods do not 
show any reliable evidence of such differences in skill, and 
it appears that analysts have similar levels of skill and that 
any effect of a"regression toward the mean" of mean analyst 
scores is minimal. 

Figure 5 shows the same data comparing scoring methods 
that was shown in the previous figure, but in this figure data 
has been combined to show means for all analysts in each of 
the scoring conditions. This combining allows the overall 
differences among the different scoring methods to be seen 
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more clearly. In addition, combining the data in this way 
increases reliability of the overall mean. 
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Figure 5: Comparison of Scoring Methods Using Mean of 
All Analysts 

Figure 6 shows a summary of the characteristics of different 
scoring methods as discussed above. The "All Analysts", 
"Other Analysts", and "Independent Analysts" methods all 
use the expertise of the most practiced (production) analysts. 

method appeared to have some bias, presumably because of 
a coding style more similar to some analysts than others. 
Finally, the "All Analysts", "Other Analysts", and "Indepen- 
dent Analysts" methods had relatively high statistical reli- 
ability, while the "5th analyst" method had much less 
reliability. 

Figure 7 shows a Recall-Precision scatterplot for the four 
analysts and for each of the four conditions shown in Figure 
4. Analysts scored by the "All Analysts" method are shown 
as solid circles, while analysts scored by the "Other Ana- 
lysts" method are shown as solid triangles. Analysts scored 
by the "Independent Analysts" method are shown as deltas, 
and analysts scored by the "5th Analyst" method are shown 
as solid squares. Note that only the upper fight-hand quad- 
rant of the usual 0-100% recall-precision graph is shown. 
Performance is expressed in terms of recall and precision, 
which are measures borrowed from information retrieval 
that allow assessment of two independent aspects of perfor- 
mance. Recall is a measure of the extent to which all relevant 
information in an article has been extracted, while precision 
is a measure of the extent to which information that has been 
entered into a template is correct. Details of the method for 
calculating recall-precision scores for the Tipster/MUC-5 
evaluation can be found in the paper by Chinchor and Sund- 
heim [7]. 
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To make the key, while the "5th analyst" method uses an 
analyst the expertise of which is somewhat more question- 
able because of putting much less time into actual coding 
articles. The "All Analysts" method appeared to have sub- 
stantial bias (producing artificially low error scores) from 
analysts scoring their own codings, while the "Other Ana- 
lysts" method appeared to produce some (but less) such bias. 
Neither the "Independent Analysts" nor the "5th Analyst" 
method suffered from this kind of bias. The "All Analysts", 
"Other Analysts", and "Independent Analysts" methods are 
unbiased with respect to particular analysts (because of 
counterbalancing to control for this), but the "5th Analyst" 
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T H E  D E V E L O P M E N T  O F  A N A L Y S T  

S K I L L  

were used in determining the differences between template 
codings. 

In interpreting the levels of performance shown by analysts 
for the extraction task, and, particularly, when comparing 
human performance with that of machines, it is important to 
know how skilled the analysts are compared to how they 
might be with additional training and practice. Comparing 
machine performance with humans who are less than fully 
skilled would result in overstating the comparative perfor- 
mance of the machines. 

Four analysts were used in production template coding, all 
having had experience as professional analysts. One analyst 
had about 6 years of such experience, another 9 years of 
experience, a third 10 years of experience, and the fourth 
about 30 years of experience. All were native speakers of 
English. None of the analysts had any expertise in micro- 
electronics fabrication. 

We compared the skill of analysts at two different stages in 
their development by analyzing two sets of templates, each 
coded at a different time. The first, or "18 month" set, was 
coded in early February, 1993, at about the same time as the 
18 month Tipster machine evaluation, after analysts had 
been doing production coding for about 3 months. The sec- 
ond, or "24 month" set was coded in June and July, 1993, 
somewhat before the 24 month Tipster/MUC-5 machine 
evaluation, and toward the end of the template coding pro- 
cess, when fill rules were at their most developed stage and 
analysts at their highest level of skill. There was some dif- 
ference in expected skill between the two pairs of analysts, 
since one pair (analysts A and B) had begun work in Sep- 
tember, although their initial work primarily involved cod- 
ing of templates on paper and attending meetings to discuss 
the template design and fill rules, and during this period they 
did not code large numbers of templates. The second pair 
began work in November, and did not begin production cod- 
ing of templates until a few weeks after the first analysts. 

Data for the 18 month condition was produced by first hav- 
ing all analysts code all articles of a 40-article set in the 
development set. Each analyst was then provided with print- 
outs of all 4 codings for a set of 10 articles, and asked to 
make keys for those articles. Data for the 24 month condi- 
tion was produced as described previously for the "All Ana- 
lysts" condition, using the 120 templates that all analysts 
coded in the test set, with each of the 4 analysts making keys 
for 30 of the 120 templates. Note that analysts making the 
keys in the 18 month condition used as inputs the codings of 
all 4 analysts, while analysts making the keys in the 24 
month condition used as inputs the codings of only 2 ana- 
lysts. In both conditions and for all analysts, "key to key" 
scoring was used, in which all alternatives in both codings 

Figure 8 shows data, in terms of percent error, for each of the 
two pairs of analysts in both the 18 month and 24 month con- 
ditions. The pairing of analysts is based on when they started 
work, with analysts A and B ("Early Starting Analysts") 
beginning work on the project before analysts C and D 
("Later Starting Analysts"). Note that analysts who started 
early appeared to make slightly fewer errors in the 18 month 
condition (27%) than in the 24 month condition (28.3%), 
although the difference is not statistically significant. 
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Who Stated Early 

This difference can be explained at least in part by the differ- 
ence in the method of making the keys. In the 18 month con- 
dition, all 4 analyst codings influenced the key, while in the 
24 month condition only 2 of the analyst codings influenced 
the key. This results in the 18 month condition producing 
scores that are artificially low in terms of errors, compared 
to the 24 month condition. The difference, based on the data 
in Figure 5, can be estimated at from about 4 to 8 percentage 
points. Thus, it appears that analysts who started early did 
not improve their skill, or improved it minimally, between 
the 18 and 24 month tests. However, analysts who started lat- 
er did appear to learn substantially, with error scores of 36% 
in the 18 month condition and 30.5% in the 24 month condi- 
tion, with the amount of learning for the analysts who started 
later probably somewhat more than shown because of the 
difference in the method of making keys. Because of the dif- 
ferences in scoring methods between the conditions and the 
small sample size in the 28 month condition, the above 
results are only suggestive. An alternative approach to 
assessing the development of skill of analysts (that does not 
require keys for scoring) compares the pattern of disagree- 

186 



.i 
C 

D 

,o '13  I "1 "'1 
i 

38 46 C 35.5 40 [ +2.5 +6 
c I 

I I 
42 42 42 I D 41 34 38 D +1 +8 +8 

[ 
A B C A B C A B C 

18 MONTH 24 MONTH DIFFERENCE 
N= 40 N= 120 18 MO- 24 MO 

Figure 9: Disagreement Matrices for 18 Month and 24 
Month Tipster Tests and Differences Between the 

Two Matrices 

ment among analysts for the 18-month and 24-month tests, 
and is more convincing. Such a pattern can be constructed 
by running the scoring program for a given set of templates 
in "key to key" mode (so that it calculates a measure of dis- 
agreement between two codings) for all pairs of codings for 
the four analysts. 

Figure 9 shows such patterns, termed here "Disagreement 
Matrices", for the 18- and 24-month tests, along with a third 
"Difference" matrix (shown at the far right) created by sub- 
tracting scores in the 24-month matrix from those in the 18- 
month one, resulting in a measure of the extent to which 
consistency between particular analysts has improved. Note 
that all cells of the Difference matrix have positive scores, 
indicating that consistency between all pairs of analysts has 
increased. 

Figure 10 shows comparisons of the scores from the Differ- 
ence matrix for three specific cases of analyst pairs. For the 
Early Starting Analysts pair (A and B), shown at the far left, 
consistency between the two analysts increased by only one 
percentage point, suggesting that even at the 18-month test, 
these analysts were already near their maximum level of 
skill. For the Later Starting Analysts (C and D), however, 
shown at the far fight, consistency between the two analysts 
increased by 6 percentage points, indicating that these ana- 
lysts were still developing their skill. For the case where the 
mean of all pairs of early-late analysts (AC, AD, BC, and 
BD) is calculated, shown as the middle vertical bar, consis- 
tency increased by an average of 4.375 percentage points, 
indicating that the less-skilled analysts had increased their 
consistency with the more-skilled analysts. 

The general finding here is that (1) the analysts who started 
earlier improved their skill minimally from the 18 to 24 
month tests; and (2) analysts who started later improved 
their skill considerably. Because by the time of the 24 month 
test the later starting analysts had as much or more practice 
coding templates as did the early starting analysts at the time 
of the 18 month test, it is reasonable to assume that their 
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Figure 10: Improvement in Consistency From 
18-Month to 24-Month Tests 

increase in skill reflects an early part of the learning curve 
and that by the 24 month test all analysts have started to 
reach an asymptotic level of skill. 

The evidence in the literature for the development of skill in 
humans suggests that skill continues to develop, if slowly, 
for years or decades even on simple tasks, and it can be 
expected that continued practice on information extraction 
by these analysts would increase their level of skill. Howev- 
er, it does appear that the analysts were very highly skilled 
by the end of the study and were at an appropriate level of 
skill for comparison with machine performance. 

C O M P A R I S O N  O F  H U M A N  A N D  
M A C H I N E  P E R F O R M A N C E  

The most critical question in the Tipster/MUC-5 evaluation 
is that of how performance of the machine extraction sys- 
tems compares with that of humans performing the same 
task. 

Figure 11 shows mean performance, in percent error, for the 
4 human analysts, using the "Independent Analysts" condi- 
tion discussed in a previous section and shown in Figure 5, 
for the 120 articles coded by all analysts from the English 
Microelectronics test set. Also shown is the corresponding 
machine performance for the same articles for the three 
machine systems in the Tipster/MUC-5 evaluation that had 
the best official scores for English Microeleclronics. 

The differences are very clear, with the mean error for 
human analysts about half that of the machine scores. Both 
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Performance 

the human and machine scores are highly reliable, as is 
shown by the standard error bars. 

Figure 12 shows essentially the same data expressed in 
terms of recall and precision. 
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Figure 12: Comparison of Human and Machine 
Using Recall and Precision Scores 

What is surprising about this data is not that the machines 
have a seemingly rather high error rate, but that the human 
rate is so high. The recall-precision diagram suggests that 
machines can have even more similar performance to 
humans on either recall or precision, if one is willing to trade 
of the other to achieve it. Machine performance is likely to 
be at least somewhat better than this in a real system, since 
resource constraints forced developers to run incomplete 
systems (that, for example, did not fill in slots for which 
information was infrequently encountered). 

The performance data shown in the figure, other data, and 
the subjective accounts of individual analysts and their co- 
workers support the general conclusion that for this group of 
analysts the level of skill for information extraction was very 
similar for each analyst. This uses the "Other Analysts" scor- 
ing method, with recall and precision scores for individual 
analysts not particularly meaningful for the otherwise more 
reliable "Independent Analysts" condition. (See Figure 7 for 
recall and precision scores for all scoring conditions). 

E F F E C T  O F  M E T H O D  O F  K E Y  

P R E P A R A T I O N  O N  M A C H I N E  

P E R F O R M A N C E  

t' A practical consideration in evaluating machind perfor- ° 
mance of importance for future evaluations (such as MUC- 
6) is the extent to which it is necessary or desirable to use 
elaborate checking schemes to prepare test templates, or 
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whether templates prepared by a single analyst will serve as 
well. 

In an attempt to provide some data relevant to this issue, the 
performance of the three best machine systems was mea- 
sured using two different sets of keys. In one condition 
("Normal key") the keys used for evaluating the machines 
were those normally used in the 24 month evaluation, for the 
120-article set for which templates were coded by all ana- 
lysts and a checked version produced by a particular analyst 
using codings of multiple analysts. In the other condition 
("Orig. Coding"), the keys used for evaluating the machines 
were the original unchecked templates coded by all 4 ana- 
lysts. 

Figure 13 shows the resulting data for both conditions for 
each of the three machines. For all machines, there is little 
difference (and none that is signitican0 between perfor- 
mance between the two conditions. 

NORMAL ORIG. CODING 
KEY USED USED AS KEY 
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Figure 13: Performance of 3 Best Machines Measured 
Individually with Key or Original Coding 

Figure 14 shows the same data, but combined for all three 
machines. Again, there is no significance difference, and 
because of the large sample size and resulting small 
standard error, the result is highly reliable. This finding may 
seem surprising given the results presented earlier that 
show substantial differences between original and 
(checked) final codings. The difference can be explained by 
the relative precision involved. Comparisons between 
original and final codings by analysts might be seen as 
analogous to different shades of colors: if an original 
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Figure 14: Performance of 3 Best Machines Measured 
Together with Key or Original Coding 

analyst codes light green, while a second analyst produces a 
checked version of dark green, a measure of differences 
may show a substantial magnitude. At the same time, the 
machines may be producing codings ranging from blue to 
orange. While comparing light green with orange may yield 
considerable differences, it is plausible that there may be 
little or no difference between the magnitudes resulting 
when orange is compared first with light green and then 
with dark green. It can be expected that as machine 
performance improves, there will be an increasing 
difference between evaluations using original and checked 
keys. 

AGREEMENT ON DIFFICULTY OF 
PARTICULAR TEMPLATES 

The extent to which different analysts (and machines) agree 
on which templates are difficult and which are easy is of 
interest in understanding the task and human and machine 
performance for the task. 

This was measured first by obtaining scores for different 
analysts for particular templates, and calculating Pearson 
product-moment correlation coefficients for corresponding 
templates between pairs of analysts. 

Figure 15 shows these correlations, with correlations 
between the 4 analysts shown at the far left, correlations 
between the 3 best machines shown correlation between ran- 
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domly in the center, and selected pairs of humans and 
machines shown at the far fight. 

Correlations among humans were relatively low, with R 2 
from .04 to .20 (median at 0.13). Correlations among 
machines were moderate, with R z from .21 to .44. 
Correlations between a particular human and a particular 
machine were low to moderate, with R 2 from .07 to .21. 
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Figure 15: Correlation of Scores on Particular Templates 
Between Different Analysts 

A second approach to studying the same issue was taken by 
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Figure 16: Performance for Easy and Hard Templates by 
Individual Analysts and Machines 

dividing a set of 93 temples into two groups, either"easy" or 
"hard". The division was made by first calculating an error 
score for each template when one analyst is measured 
against another as akey. This was done for all 93 temples for 
2 pairs of analysts, with the mean difference calculated for 

both pairs for each template. The templates were then divid- 
ed into "easy" and "hard" groups, with the "easy" group con- 
sisting of those templates with the lower mean difference 
scores and the "hard" group consisting of those templates 
with the higher scores. 

This was intended a a way of constructing a simulation of a 
corpus and task that was easier (and harder) than the Tipster 
task, which was viewed by many in the Tipster project as 
excessively demanding. The hypothesis was that the 
machines might do comparatively better than humans on the 
"'easy" set than on the "hard" set. 

The results are shown in Figure 16 for two analysts and two 
machines. The opposite of the expected (and hoped-for) 
hypothesis appeared to be the case. The human analysts pro- 
duced roughly twice as many errors on the "hard" set of tem- 
plates as on the "easy" set, while the machines were only 
somewhat better on the "easy" versus "hard" set. 

Figure 17 shows the same data, but in terms of the means for 
each pair of humans and machines. In addition, data (at the 
far fight) is presented in which the mean machine error is 
divided by the mean human error for each set, thus normal- 
izing the difference. Here the comparative difference 
between machine and human was much larger for the "easy" 
set compared with the "hard" set. 

Whether this method allows a realistic simulation of the 
effects of difficulty of the text and task is unclear and the 
meaning of this data is hardto interpret. It would be valuable 
to develop tests sets for future MUC and Tipster evaluations 
that could effectively assess the effect and nature of text and 
task difficulty. 
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C O M P A R I N G  H U M A N  A N D  M A C H I N E  

P E R F O R M A N C E  F O R  S P E C I F I C  
I N F O R M A T I O N  

A particularly interesting question about human and 
machine performance is that of how the two compare for dif- 
ferent aspects of the extraction task. Such differences are 
most easily seen by comparing human and machine perfor- 
mance on different slots in a template object or on an entire 
object. 

This issue was investigated by making use of a 60-template 
subset of the MUC-5/Tipster test set that was coded by all 
analysts and for which a key was made by the 5th analyst. 

The scoring program, in addition to calculating overall 
scores for templates or sets of templates, also provides 
scores for each individual slot and object in the template. 

Scores for each of the four human analysts and the three best 
machine systems were obtained for each object and slot 
using the scoring program. Only those objects and slots with 
at least 10 examples of nonblank responses in the keys were 
further scored. 

Because of the wide disparity between scores for humans 
and for machines, the data representing performance on 
each slot and object were normalized in the following man- 
ner: First, performance for each slot and object for the 4 
human analysts was averaged by calculating a mean error 
for each slot and object. A rank order score was then 
assigned to each slot and object, reflecting the lowest to 
highest comparative performance for humans for that slot or 
object. 

Finally, a calculation was made of the comparative differ- 
ence in performance in scores for particular slots and objects 
between humans and machines, by sublracting the rank 
order score for machines from the rank order score from 
humans for the corresponding slot or object. 

Figure 18 shows the results, listing the 5 comparatively 
"worst" slots from the point of view of the machines and 
then the 5 comparatively "best" slots from the point of the 
machines. For further comparison, one slot in which the per- 
formance of humans and machines are comparatively equal 
is listed. 

The column at the left shows the rank order difference 
score, with +30 indicating <equip>name, the slot for which 
machines did the worst compared with humans. The two 
columns at the right list the error scores for humans and 
machines, with the <equip>name slot resulting in a 
machine score of 84.3% error, but a human score of 18.0% 
error. Note that this extreme comparative difference results 

MACHINE COMPARATIVELY WORSE 

DIFF SLOT MACHINE HUMAN 

+30 <equip> Name 84.3 18.0 

+12.5 <litho> equip 68 20 

+11 <layering> equip 67 19.3 

+10 <pkg> device 76.3 22.8 

+10 <pkg> pl..count 60 17.5 

MACHINE COMPARATIVELY BETTER 

-20 <layering> type 49.0 29.5 

-17 <layering> OBJ 45 25.6 

-13 <layering> film 66 37.8 

-13 <pkfl> unit 68 46 

-8 <litho> type 57 24.25 

COMPARATIVELY EQUAL 

0 <device> function 68.7 29.3 

Figure 18: Comparisons of Human and Machine 
Performance on Specific Slots 

ITom two factors: the machines did particularly bad on this 
slot (84.3%) compared to their overall performance 
(68.7%), and humans did particularly well on the slot 
(18.0%) compared to their overall performance (29.3%). 

This data is essentially a pilot experiment towards investi- 
gating the question of how human and machine performance 
might compare on specific tasks, with slot and object fills the 
best available way of obtaining this information with the 
given darns Without detailed investigation, we can only spec- 
ulate on the reasons for the results. It appears, however, that 
many or all machine developers, pressed for time particular- 
ly in the case of microelectronics, simply did not bother to 
code specific slots, viewing them as unimportant to the final 
score. Those slots would likely appear in a list of slots that 
machines did comparatively bad on (though it may also be 
necessary for humans to do particularly badly on the slots as 
well). It appears that, in the case of the slots that machines 
did comparatively well on, that these were slots with large 
sets of categorical fills, with the set sufficiently large and the 
items sufficiently obscure that humans had a difficult time 
remembering them well enough to effectively detect them 
when they appeared in text. Because these words (or acro- 
nyms) tended to be context-free, relatively simple strategies 
for detecting these keywords and matching them to slots 
could be used. This does suggest that the abilities of humans 
and machines are quite different, and that an approach in 
which an integrated human-machine system is used rather 
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than a machine-only system, as is described in [3], might be 
appropriate. 

CONCLUSIONS 

The present study has shown that on the English Microelec- 
tronics extraction task, the best machine system performs 
with an error rate,of about 62%, a little less than twice that 
of  the 33% error produced by highly skilled and experienced 
human analysts. 

This level of  performance suggests that machine extraction 
systems are still far away from achieving high-quality 
extraction with the more difficult texts and extraction prob- 
lems characterized by the Tipster corpus. However, machine 
performance is close enough to the human level to suggest 
that practical extraction systems could be built today by 
careful selection of  both the text and the extraction task, and 
perhaps making use of  integrated human-machine systems 
that can harness the abilities of  both humans and machines 
for extraction rather than depending upon a machine-only 
system. 

ACKNOWLEDGEMENTS 

The following persons contributed to the effort resulting in the 
human performance measurements reported here: Deborah 
Johnson, Catherine Steiner, Diane Heavener, and Mario Severino 
served as analysts for the English Microelectronics material, and 
Mary Ellen Okurowski made keys to allow comparison with all 
analysts. Susanne Smith served as a technical consultant on 
microelectronics fabrication. Beth Sundheim, Nancy Chinchor, 
and Kathy Daley helped in various ways, particularly with respect 
to the scoring program used. Nancy Chinchor also provided some 
statistical advice. Boyan Onyshkevych also helped in defining the 
problem and approaches to attacking it, and was a coauthor on 
some early presentations of pilot work on human analyst 
performance at the Tipster 12-month meeting in September, 1992 
and the National Science Foundation Workshop on Machine 
Translation Evaluation on November 2-3, 1992, both in San 
Diego. Mary Ellen Okurowski provided valuable discussions 
about the human performance work and comments on this paper. 
Larry Reeker helped with project management of the overall 
template collection effort, and provided comments on this paper. 

REFERENCES 

1. Will, Craig A., "Comparing Human and Machine Performance 
for Natural Language Information Extraction: Results for 
English Microelectronics from the MUC-5 Evaluation." 
Proceedings of the Fifth Message Understanding Confer- 
ence (MUC-5). Baltimore, MD, August 25-27, 1993. San 
Mateo, CA: Morgan Kaufmann, Inc., 1994. 

2. Sundheim, Beth. "Overview of the Fourth Message Understand- 
ing Evaluation and Conference." Proceedings of the Fourth 
Message Understanding Conference (MUC-4) (p. 18 and 
20). McLean, VA, June 16-18, 1992. San Mateo, CA: Mor- 
gan Kaufmann, Inc., 1992. 

3. Will, Craig A., and Reeker, Larry H. "Issues in the Design of 
Human-Machine Systems for Natural Language Informa- 
tion Extraction." Presented at the 18-month Tipster meet- 
ing, February 22-24, 1993, Williamsburg, VA. Paper 
available from authors. 

4. Onyshkevych, Boyan A. "Template Design for Information 
Extraction." Proceedings of the TIPSTER Text Program, 
Phase One. San Mateo, CA: Morgan Kaufmann, Inc., 1994. 

5. Carlson, Lynn, Onyshkevych, Boyan A., and Okurowski, Mary 
Ellen. "Corpora and Data Preparation for Information 
Extraction." Proceedings of the TIPSTER Text Program, 
Phase One. San Mateo, CA: Morgan Kaufmann, Inc., 1994. 

6. Onyshkevych, Boyan, Okurowski, Mary Ellen, and Carlson, 
Lynn. "Tasks, Domains, and Languages for Information 
Extraction." Proceedings of the TIPSTER Text Program, 
Phase One. San Mateo, CA: Morgan Kaufmann, Inc., 1994. 

7. Chinchor, Nancy, and Sundheim, Beth. "MUC-5 Evaluation 
Metrics." Proceedings of the Fifth Message Understanding 
Conference (MUC-5). Baltimore, MD, August 25-27, 1993. 
San Mateo, CA: Morgan Kaufmann, Inc., 1994. 

8. SAIC. "Tipster/MUC-5 Scoring System User's Manual." Ver- 
sion 4.3, August 16, 1993. San Diego, CA: Science Appli- 
cations International Corporation. 

APPENDIX: 

Details of Statistical Measurements and Tests 

Performance is expressed in terms of error per response fill, using 
the methodology described by Nancy Chinchor and Beth 
Sundheim [7] and implemented by the SAIC scoring program [8]. 

Error is defined in this methodology by the following formula: 

incorrect + (partial x 0.5) + missing + spurious 
Error = 

correct + partial + incorrect + missing + spurious 

where each variable represents a count of the number of responses 
falling into each category. A correct response occurs when the 
response for a particular slot matches exactly the key for that slot. 
A partial response occurs when the response is similar to the key, 
according to certain rule8 used by the scorer. An incorrect 
response does not match the key. A spurious response occurs when 
a response is nonblank, but file key is blank, while a missing 
response occurs when a response is blank but the key is nonblank. 

192 



The scoring program is typically given a set of templates and 
provides an error score, based on all slots in all of the templates. In 
this paper data is usually reported as means in terms of this error 
score. However, statistical parameters describing variability are 
estimated by having the scoring program generate scores for each 
template, even though the means of the data reported here are 
calculated across a set of templates. Only about 80% of templates 
produce an independent score, and only those templates are used 
in estimating statistical parameters. Thus, in many cases two Ns 
are given, with the larger number the number of templates scored 
and the smaller number the number of individual template scores 
used in estimating the variance, calculating the standard error and 
confidence intervals, and performing statistical tests. 

In the remainder of this Appendix, details are provided for data 
presented in each Figure, as indicated: 

Figure 2: In the "primary" and "secondary" conditions, 120 
templates were scored, 30 for each analyst. In the "other" 
condition, 240 templates were scored, 60 for each analyst. The 
mean for the primary condition was statistically different from 
zero at a level of p <.0001 (z=6.74). The standard error of the 
mean for the primary condition was 2.30 and the 95% confidence 
interval (indicating that 95% of the time the true population mean. 
can be found within this interval) was from 10.9 to 20.7. Of the 
120 templates (each of which con~ibuted to the score shown as 
the mean), 92 templates codd be scored independently, and thus 
N=92 was used for statistical tests. The standard error of the mean 
for the secondary condition was 2.76 and the 95% confidence 
interval from 21.5 to 32.5. N was 95. The means for the primary 
and secondary conditions are statistically different at a level of p 
<.01 (t=3.19). The standard error of the mean for the "other" 
condition was 2.13, and the 95% confidence interval was from 
33.2 to 41.6, with an N of 193. The means for the secondary and 
other conditions were significantly different (p <.01, t=2.88). 

Figure 4: The standard error of the mean for the "All analysts" 
condition for the 4 analysts (A,B,C, and D, respectively) was as 
follows: 2.8.2.6, 3.1, and 2.9. For the "Other analysts" condition: 
3.4, 3.2, 3.7, and 3.3. For "Independent analysts": 4.1, 3.7, 3.9, 
and 5.7. For "5th analyst": 4.7, 4.5, 4.1, and 4.4. 

Figure 5: The mean across analysts in the "All Analysts" 
condition is 25.3, with a standard error of the mean of 1.45 and a 
95% confidence interval from 22.4 to 28.2 (N=374). The mean 
across analysts in the "Other Analysts" condition is 29.8, with a 
standard error of the mean of 1.74 and a 95% confidence interval 
from 26.39 to 33.21 (N=283). The mean across analysts in the 
"Independent Analysts" condition is 33.2, with a standard error of 
the mean of 2.14 and a 95% confidence interval from 29.0 to 37.4 
(N=190). The mean across analysts in the "5th Analyst" condition 
is 28.3, with a standard error of the mean of 2.24 and a 95% 
confidence interval from 24.0 to 32.6 (N=187). The mean of the 
"All analysts" condition is significantly different from that of the 
"Other analysts" condition (t=2.O0), while the mean of the "Other 
analysts" condition is not significantly different from that of the 
"independent analysts" condition. 

Figure 7: In the "All Analysts" condition, analyst A had recall and 

precision scores of 84 and 86.5, respectively, analyst B 81 and 

88.5, analyst C 82.5 and 85.5, and analyst D 82 and 86.5. In the 

"Other Analysts" condition, analyst A had recall and precision 

scores of 79 and 79, analyst B 72 and 81, analyst C 79 and 75, and 

analyst D 78 and 82. In the "Independent Analysts" condition, 

Analyst A had recall and precision scores of 81 and 78, Analyst B 

72 and 83, Analyst C 79 and 79, and Analyst D 73 and 75, 

respectively. In the "5th analyst" condition, analyst A had recall 

and precision scores of 81 and 83, analyst B 69 and 80, analyst C 

86 and 86, and analyst D 81 and 86, respectively. 

Figure 11: The standard error of the mean for the human analysts 

was 2.14, and the 95% confidence interval was from 29.0 to 37.4 

(N=190). The mean error for system X (Vishnu) was 62%, with a 

standard error of 2.41 and a 95% confidence interval from 47.28 to 

66.72. The mean error for system Y (Shiva) was 63%, with a 

standard error of 2.19 and a 95% confidence interval from 58.71 to 

67.29, while the mean error for system Z (Brahma)was 68%, with 

a standard error of 2.27and a 95% confidence interval from 63.55 

to 72.45. The difference between the mean human scores and the 

mean for the best machine was statistically significant (p<.001, 

t=8.58). 

Figure 12: The human analysts had recall and precision scores of 

79 and 79%, 72 and 81%, 78 and 82%, and 79 and 75%, 

respectively. The three best machines, in conlxast, had recall, and 

precision scores of 45 and 57%, 53 and 49%, and 41 and 51%, 

respectively. These data differ slightly from the official scoring for 

machine performance because they use only the 120 article subset, 

not the full 300 article test set. In addition, the official scoring of 

the machines used interactive scoring, in which human scorers 

were allowed to give partial credit for some answers, while this 

scoring was done noninteractively. Note, however, that non- 

interactive scoring was used for all data in this paper, so 

comparisons between humans and machines are possible. The use 

of noninteractive scoring for both machine and human data could 

bias the result slightly, because of the possibility that humans 

might be better at providing partially or fully correct answers that 

don't obviously match the key, but again the difference is likely to 

be slight. 

Figure 1 3 : 1 2 0  templates were used in the "Normal key" 

condition, while 480 templates were used in the "Orig. Coding" 

condition in the calculation of the mean. 

Figure 1 4 : 3 6 0  templates were used in the "Normal key" 

condition, and 1440 used in the "Orig. Coding" in calculating the 

mean. 320 and 1287 were used, respectively, in calculating the 

error. 
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