
Finite State Automata and Arabic Writing

M i c h e l F a n t o n
CERTAL-INALCO 1

73 rue Broca
F75013 Paris France

email : certal2@ext.jussieu.fr

A b s t r a c t

Arabic writing has specific features, which im-
ply computational overload for any arabicized
software. Finite state automata are well known
to give efficient solutions for translation prob-
lems which can be formalized as regular lan-
guages. These automata are as more easily built
that their alphabet have been reduced through a
careful linguistic analysis. This reduction makes
it possible to write directly an automaton with-
out going through the intermediate stage of con-
textual rules, which have to be translated into
an automaton for the sake of efficiency. This
paper presents two Moore automata, the first
one, taken as an example, gives a solution to the
choice of right shape for a letter to be printed
or displayed (usually known as contextual anal-
ysis), the second one studies the more complex
problem of determining the right carrying letter
for hamza. Every arabicized software has to face
these questions and finite state automata are
certainly a good answer to them.

I N T R O D U C T I O N

Arabic writing has specific features, which im-
ply computational overload for any arabicized
software. The first one, well known now for
many years, is the fact that Arabic printing tries
to imitate handwriting. Because of this, conso-
nants and long vowels can have four or only two
shapes depending of their ability to be bound to
the following letter and of where they appear in
the word.
These shapes can be very different : for example
letter o 2 (h)

ICERTAL : Centre d'l~tudes et de Recherche en
Traitement Automatique des Langues, I N A L C O : In-
stitut National des Langues et Civilisations Orientales

~the Arabic parts of this paper have been typeset

isolated final medial initial

or present only small variations : for example
letter ~r* (s)

isolated final medial initial

Letters which cannot be bound to the next
one have only two shapes, for example letters

(d) and .~ (w and fi)

isolated final isolated final

During the seventies and the beginning of the
eighties, hard controversies took place within
the Arabs concerned with these questions, lin-
guists and computer scientists. Finally in 1983
the ASMO (Arab Society for Normalization
which unfortunately does not exist any more),
influenced by Pr. Lakhdar-Ghazal from IERA
(Rabat Morocco) chose to give a unique code to
all shapes of one particular letter. This is cer-
tainly a good choice from a linguistic point of
view, but even so, compromises had to be made
to take into account writing habits that con-
flicted with it. Letter hamza is the most notice-
able example of such a compromise for reasons
we shall explain later.

1 C O N T E X T U A L A N A L Y S I S

Whatever be the choice made for coding, from
a typesetting or a computational point of view,
there must be different codes for the different
shapes of a letter. So every arabicized software
has to use two systems for coding : the reduced
code we have just introduced and the extended
code in which the different shapes have different

using Klaus Lagally's ArabTEX

26

codes. Up to UNICODE, no normalization exists
for the second one. So every arabicized software
has to solve the problem of choosing the right
shape of every printed or displayed letter.

1.1 R u l e s for l e t t e r s h a p e
d e t e r m i n a t i o n

This determination, frequently known as con-
textual analysis can be summarized into the fol-
lowing set of unformal rules:

1. At the beginning of a word:

• If the letter is a binding letter it takes
the INITIAL shape.

• If it is a non binding one it takes the
ISOLATED shape.

2. In the middle of a word (there is at least
one letter following the current one):

(a) If the letter is a binding letter then

• If it follows a binding letter it takes
the MEDIAL shape.

• If it follows a non binding letter it
takes the INITIAL shape.

(b) If the letter is a non binding letter

• If it follows a binding letter it takes
the FINAL shape.

• If it follows a non binding letter it
takes the ISOLATED shape.

3. At the end of a word (for both types of
letters)

• If it follows a binding letter it takes the
FINAL shape.

• If it follows a non binding letter it
takes the ISOLATED shape.

1.2 M o o r e a n d M e a l y a u t o m a t a

Moore au tomata are state assigned output ma-
chines : the output function assigns output
symbols to each state. They differ from Mealy
automata, transition assigned finite state ma-
chines, where output symbols are associated
with transitions between states. Mealy au-
tomata are sometimes called finite transducers.
The two machine types have been demonstrated
to produce the same input-output mappings 3.

3see (Aho and Unman, 1972) and (Hopcroft and Ull-
man, 1979) for a full account of these matters

Mealy au tomata are certainly a bet ter choice
when bidirectional applications are considered.
As the question is to identify succession of sym-
bols of a certain type we found it clearer to use
a Moore automaton.

1.3 A M o o r e a u t o m a t o n for c o n t e x t u a l
a n a l y s i s

1.3.1 S o u r c e l a n g u a g e o f t h e a u t o m a t o n

It follows from the determination rules that we
only need to know what particular letter we are
dealing with only at the output stage. All we
have to know is wether it is a binding or a non
binding letter 4. The alphabet of the automaton
should be A = (# } [J L where L is the set of
arabic letters present in the reduced code and
the word boundaries. The set of letters will
then be partitioned into three sets •

A--+ A ' - { { # } , N , B }

N being the set of non binding letters and B the
set of binding letters. If we denote respectively
n and b an arbitrary element of each of these
sets, the source language of the automaton can
be reduced to:

A1 = {#, n, b}

L1 = { # (n V b) ' # }

where V denotes disjunction and • is the Kleene
star

1 .3.2 G r a m m a r a n d a u t o m a t o n for L1

Language L1 can be generated by the simple
grammar :

m -+ # A #
A A(lb)

or the as simple automaton :
initial states = {1}
final states: -- {5}
transitions

4As this question has only been taken as an example,
the alphabet has been oversimplified. A full working
automaton should cope, as far as arabic is concerned,
with two additional problems : hamza on the line to
which no preceding letter can be bound to and l~m alif
ligature. It should also give a proper treatment of non
arabic letters and symbols. But this would not affect the
here described method.

27

b n # output
1 0 0 2 0
2 3 4 0 #
3 3 4 5 b
4 3 4 5 n
5 0 0 0 #

1.3.3 Targe t language of t h e a u t o m a t o n

The alphabet for the target language L2, given
what has been said before and using the same
method of partioning and then reducing the al-
phabet could be at first sight:

A2 = { # , I , i , m , f }

where I denotes a letter in isolated shape, i, m
and f stand for initial, medial and final shape.
But letters from N have only two shapes final
and isolated. Moreover isolated and final shapes
of letters from B can only appear at the end of a
word, which is not the case for the correspond-
ing shapes of letters from N. So, the following
modified version of A2 will be prefered :

A2 = {#, In , Ib, i ,m, f~ , fb}

where In stands for isolated shape of a letter
from N and so on. With these symbols the tar-
get language L2 can be described by the regular
expression :

L2 = {#(I~im' fnI~) ' (Ib V fb V E)#}

where E denotes as usual the empty string.

1.3.4 Trans la t ion a u t o m a t o n
The translation process of a sequence of LI into
a legal sequence of L2 can be operated through
the following automaton :
initial states = {1}
final states = {8}
transitions :

n b # output
1 2 {3,7} #
2 2 {a,7} 8 I.
3 6 {4,5} @ i
4 6 {4,5} @ m
5 0 0 8 A
6 2 {3,7} S f.
7 0 0 S Ib
8 o o o #

This automaton is clearly nondeterministic.
This is due to the fact that a letter from B
can appear in final or isolated shape when sit-
uated at the end of a word, in initial or medial
shape when another letter follows it. Because
of this nondeterministic feature, every transi-
tion should appear as a set. When this set is a
singleton, the "only" state has been put without
braces for an easier reading.

It can be easily augmented to take account of
occasional short vowels or shadda 5 (') that could
occur : the transitions to add would force the
automaton to loop onto the same state, what-
ever be it since vowels or shadda can only ap-
pear after a consonant and do not influence its
shape.

1.3.5 P R O L O G tes t p r o g r a m
This program is a straightforward translation of
the above described grammar and automaton.
The predicate test allows to limit the genera-
tion of inputs to a given length. In the results
we chose to limit the length of the input to 6
included word boundaries.

X
7, generation of elements of LI
X
m--> [#],a,[#].
a --> ([n];l'b]).
a --> a,([n];[b]).

X
7, translation automaton
Y.
init ial_stat e (1).
final_state (8).

tr(1,#,l)
tr(1 ,n,2)
tr(1 ,b,3)
tr(1,b,7)
t r (2 , # , 8)
tr(2,n,2)
t r (2 , b , 3)
t r (2 , b , 7)
t r (3 , n , 6)
t r (3 , b , 5)
t r (3 , b , 4)

tr(4,b,5)
tr(4,b,4)
tr(4,n,6)
tr(5,#,8)
tr(6,#,8)
tr(6,n,2)
t r (6 , b , 3)
t r (6 , b , 7)
t r (7 , # , 8)

output (I, #). output (5,fb).
output(2, 'In'). output(6,fn).

5sign denoting a double letter

28

o u t p u t (3 , i) .
ou tput (4 ,m) .

output(7,'Ib').
o u t p u t (8 , #) .

forme(Input,Output):-
initial_state(Is),
path(Is,Fs,lnput,Output),
final_state(Fs).

path(S,S,[],[]).
path(SI,S2,[XIXs],[YIYs]):-
tr(SI,X,S),
output(S,Y),
path(S,S2,Xs,Ys).

test(L):-
m(M,[]),
length(M,L1),
((LI > L,!,nl,fail);true),
printing_form(M,F),
nl,write(M),tab(1),write(F),fail.
t e s t (_) .

1.3.6 P r o g r a m resul ts

input output
[#,n,#]
[#,b,#]

[#,n,n,#]
[#,n,b,#]
[#,b,n,#]
[#,b,b,#]

[#,n,n,n,#]
[#,n,n,b,#]

[#,In,#]
[#,Ib,#]

[#,In,In,#]
[#,In,Ib,#]
[#,i,fn,#]
[#,i,fb,#]

[#,In,In,In,#]
[#,In,In,Ib,#]

[#,n,b,n,#]
[#,n,b,b,#]
[#,b,n,n,#]
[#,b,n,b,#]
[#,b,b,n,#]
[#,b,b,b,#]

[#,In,i,fn,#]
[#,In,i,fb,#]
[#,i,fn,In,#]
[#,i,fn,Ib,#]
[#,i,m,fn,#]
[#,i,m,fb,#]

[#,n,n,n,n,#]
[#,n,n,n,b,#]
[#,n,n,b,n,#]
[#,n,n,b,b,#]
[#,n,b,n,n,#]
[#,n,b,n,b,#]
[#,n,b,b,n,#]
[#,n,b,b,b,#l
[#,b,n,n,n,#l
[#,b,n,n,b,#]
[#,b,n,b,n,#]
[#,b,n,b,b,#]

[#,In,In,In,In,#]
[#,In,In,In,Ib,#]
[#,In,In,i,fn,#]
[#,In,In,i,fb,#]
[#,In,i,fn,In,#]
[#,In,i,fn,Ib,#]
[#,In,i,m,fn,#]
[#,In,i,m,fb,#]
[#,i,fn ,In ,In,#]
[#,i,fn,In,Ib,#]
[#,i,fn,i,fn,#]
[#,i,fn,i,fb,#]

input
[#,b,b,n,n,#]
[#,b,b,n,b,#]
[#,b,b,b,n,#]
[#,b,b,b,b,#]

output
[#,i,m,fn,In,#]
[#,i,m,fn,Ib,#]
[#,i,m,m,fn,#]
[#,i,m,m,fb,#]

2 W R I T I N G O F L E T T E R H A M Z A

The hamza can be written in five different man-
$

ners (I, !, 3, ~ , ') depending mainly upon:

• its position within the word

• the preceding and the following vowel

As the choice made for coding, was to adhere
to a linguistic point of view, there should have
been only one code for all these shapes and car-
rying consonants. But, as it has just been said,
to determine the correct writing of hamza, one
has to know the surrounding vowels, and it is of
common knowledge that the Arabs do not usu-
ally write short vowels. These essential data be-
ing missing, no algorithm can take place to ful-
fil this task for a common usage such as display
a text on a screen. Thus, the ASMO decided
to have distinct codes for the different carriers
of hamza, but not of course for their different
shapes which can be determined as seen before.

So why is this question of any interest ? If we
consider NLP applications for Arabic, it could
worth considering this problem at generation
stage. For instance many vowel alternations
occur in the conjugation of verbs, and when a
hamza is present in the verb root, the hamza
writing will vary accordingly.

For example the verb I~ q a r a ' a - he (has)

read-changes to 5 . ~ . " y a q r a ' f n a - t h e y read
o

(present) - and to ~.z~ q u r i ' a - it (has) been

read. And at the generation stage vowels are
known even if we decided not to write them.
The only alternative would be to put all the
forms in a dictionary. At CERTAL, our philos-
ophy is to use all the possible means to reduce
the size of dictionaries. Hence this question ap-
peared to us worth studying.

2.1 Rules of h a m z a wr i t ing

1. When a hamza is at the beginning of a word
it is written

29

• over an alif (i) if the next vowel is

an "a" (') as in l~l

(present)- or an "u"

'uktub - write ! -

'aqra'u - I read

(') as in 0 . ~

• under an alif (~ if the next vowel is an
0 ~ 0

" i " (.) as in l ,) ~ 'iv.l~m - informat ion

2. When a hamza is within a word (i.e. pre-
ceded and followed by some consonant) it
is wri t ten

• over an alif (i) when

- preceded by a sukfin (0) and fol-

lowed by an "a" as in JL~" yas 'a lu

- he a s k s -

- preceded by an "a" and followed by

a sukfin as in ~ . " ya 'kulu - he eats

- preceded by an "a" and followed by

an "a" as in ¢Jk~ sa 'ala - he (has)

asked -

• over a waw (~) when

- preceded by a sukfin and followed

by an "u" as in ~ . ' " yab 'usu - he

is s trong, brave -

- p r e c e d e d by an "a" and followed

by an "u" or an "fi" as in " ~'"

ya '~bu - to return or to suffer -

preceded

a sukfin

prefers -

by a "u" and followed by

as in . ~ yu ' th i ru - he

- preceded by an "u" and followed by

an "a" as in . ~ yu 'a th th i ru - he

influences -

- preceded by an "u" and followed

by an "u" or an "fi" as in ~r_~Y.

bu '~sun - distresses -

- precede by an "fi" and followed by
an " u "

• over a ya (G) when

- preceded by an "i" whatever be the

following vowel as in ~ . bi ' run -

well - . ~ bi 'drun plural of the

same word

- followed by an "i" whatever be the

preceding vowel as in ~3~ qd ' idun

- leader, director, commandan t , . . .

• wi thout any carrying letter when

- preceded by an "&" and followed by

an "a" as ~1~5 bad~'a tun - begin-

ning -

- preceded by an "fi" and followed by
an "a" as in O: l i ~ " y a s a ' d n i - they

(both) become bad -

3. When a hamza is a t the end of a word it is
wri t ten

• wi thout any carrier when

- the preceding vowel is a sukfin 6 as
in *At2". j u z ' u n - a part -

- the preceding vowel is an "g" as in

~l~fi..l a j za 'un , plural of the same

word
- the preceding vowel is an "fi" as in

; y :~ yasa 'u - it becomes bad -

- the preceding vowel is an "i" as in
• o
*0~"~- yaj f 'u - he arrives -

• over alif when the preceding vowel is
an "a" and the following is one of " a ' ,

" a n " , "u" , "un" as in i"a~ mubta d a 'un
•

l S ~ I a l -mub tada 'u m u b t a d a ' a n

~ o ~

I .~] . l a l -mubtada 'a, different forms of

the word meaning (grammatical) sub-
ject

• under alif when the preceding vowel is
an "a" and the following is " i" or " in"

I ~ m u b t a d a ' i n 15"_'-_~i a l -mubtada ' i ,

indirect case of the same word

6there are some exception when the preceding conso-

nant is "y" as in ~ shagt'an undetermined direct case

- a thing -

30

• over waw when the preceding vowel is
"u" as in ~ . jaru 'a- he (has) risked

- ~ . " yajru'u - he riskes-

• over ya when the precedin.gvowel is "i"

as in ~I: ,~ khati'un ~ t l d l al-khati'a

~.~,t~d~ al-khati'i - wrong-

A full account of the rules governing hamza
writing have just been given. Usual presenta-
tions of hamza writing add to these rules, the
rules of madda (~) writing. Madda is a con-

traction used for a hamza followed by an ~ or
a hamza followed itself by a sukfin. This hap-
pens in some derivations or conjugations, thus
we considerer it as pertaining to the whole set
of transformations which occur in those cases.

~'q 5kulu +-- ~q~ 'a'kulu -I eat -

~- l dkhad_a +-- ~ . ~ 'aakhad_a - he blamed -

Besides, except for elementary schools and
Coranic Recitation, noboby cares about ending
short vowels. So, if the last vowel is not long
it is treated as it were a sukfin, i.e. no vowel.
This is always true of modern arabic and this
reduces the number of rules involved at the end
of a word.

2.2 A M o o r e a u t o m a t o n for h a m z a
w r i t i n g

With the aforementioned restrictions these rules
can also be implemented as a Moore automaton.

2.2.1 S o u r c e l a n g u a g e o f t h e a u t o m a t o n

It follows from the determination rules that we
have to know

• if the consonant to be processed is a hamza
(whatever its carrier has to be) or not,

• wether a vowel is present before or after the
hamza,

• and if so, what are the surrounding vowels
(short or long).

Again the presence of a shadda is non pertinent
and can be treated as mentioned for the con-
textual analysis. The alphabet for the source

language L3 can be, using the same method as
before :

A3 = { # , l , hz, su, a,u,i,?t, fz,~,}

where hz is a hamza with any carrier, 1 any
consonant other than hamza and su stands for
sukfin. The only other constraints for this lan-
guage are :

i. a sukfin cannot

• neither follow the first consonant

• nor follow a consonant already pre-
ceded by a sukfin

2. a hamza cannot follow another hamza 7

The regular expression corresponding to L3
would be too complicated to be really clarify-
ing so we shall go directly to the definition of a
generating automaton for this language.
initial states = {1}
final states: = {21}
transitions

Because of the narrowness of this style
columns, the transition tables have been dev-
ided in two parts. The last column of the second
table gives the output corresponding to every
state.

hz 1 a u i
1 0 0 0 0 0
2 3 4 0 0 0
3 0 0 5 6 7
4 0 0 8 9 1 0
5 0 {17,4} 0 0 0
6 0 {17,4} 0 0 0
7 O {17,4} O O O
8 {18,3} {17,4} 0 0 O
9 {18,3} {17,4} 0 0 0
10 {18,3} {17,4} 0 0 0
i i O 4 0 0 0
12 0 4 0 0 0
13 0 4 0 0 0
14 3 4 0 0 0
15 3 4 0 0 O
16 3 4 0 0 0
17 0 0 0 0 0

7this is true since we are at writing stage, not deriva-
tion or inflection stage

31

hz l a u i
1 8 0 0 0 0 0
19 3 4 0 0 0
2 0 0 4 0 0 0
21 0 0 0 0 0

ft f su # 0

1 0 0 0 0 2 0
2 0 0 0 0 2 #
3 0 0 0 0 2 hz
4 0 0 0 0 2 t
5 1 1 0 0 0 0 a
6 0 12 0 0 0 u
7 0 0 13 0 0 i
8 14 0 0 0 0 a
9 0 15 0 0 0 u
10 0 0 16 0 0 i
11 0 0 0 0 21 a
12 0 0 0 0 21
13 0 0 0 0 21 i-
14 0 0 0 0 21
15 0 0 0 0 21 fi
16 0 0 0 0 21 ~:
17 0 0 0 19 0 l
18 0 0 0 20 0 hz
19 0 0 0 0 21 su
20 0 0 0 0 21 su
21 0 0 0 0 0 #

2.2.2 Target language of the au tomaton
The only differences with the source language
lie in the distinct carriers for the letter hamza:

A4 -- {# , l , hwc, hoa, hua, how, hog,
su, a, u, i, ~, ~, 7, }

where hwc stands for hamza without a carrier,
hoa for hamza on alif, hua for hamza under alif,
how for hamza on waw and hog for hamza on
ya.

2.2.3 Translation au tomaton
initial states = {1}
final states: = {36)
transitions

+I l+ul.l,+l/
1 0 0 0 1 0 0 0
2 0 0 0 1 4 5 6
3 0 0 0 1 7 8 9
ImH mmml
] m u + m l i m m m l ~

32

l hz su a u i

6 16 {14,34} 0 0 0 0
7 16 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 ' 0
10 0 0 21 22 26 30
11 16 {19,31} 0 0 0 0
12 0 0 24 25 26 30
13 16 {20,31} 0 0 0 0
14 0 0 27 28 29 30
15 16 {21,31} 0 0 0 0
16 0 0 17 4 5 6
17 2 {18,31} 0 0 0 0
18 0 0 0 22 26 30
19 0 0 0 23 26 30
20 0 0 0 28 29 30
21 2 0 0 0 0 0
22 16 0 0 0 0 0
23 16 0 0 0 0 0
24 16 0 0 0 0 0
2.5 16 0 0 0 0 0
26 16 0 0 0 0 0
27 16 0 0 0 0 0
28 16 0 0 0 0 0
29 16 0 0 0 0 0
30 16 0 0 0 0 0
31 0 0 35 0 0 0
32 0 0 35 0 0 0
33 0 0 35 0 0 0
34 0 0 35 0 0 0
3.5 0 0 0 0 0 0
36 0 0 0 0 0 0

fi f # output
1 0 0 0 1 #
2 0 0 0 0 l
3 0 0 0 0 0
4 11 0 0 0 a
5 0 13 0 0 u
6 0 0 15 0 i
7 0 0 0 0 [hoa, a]
8 0 13 0 0 [hoa, u]
9 0 0 15 0 [hua, i]
lO 0 0 0 0 0
11 0 0 0 36 a
12 0 0 0 0 0
13 0 0 0 36 fi
14 0 0 0 0 0

a u , # outpu{
15 0 0 0 36 f
1 6 0 0 0 0 l
17 0 0 0 0 su
1 8 0 0 0 0 0
1 9 0 0 0 0 0
2 0 0 0 0 0 0
2 1 0 0 0 0 [hoa, su]
22 0 O O 0 [hoa, a]
23 0 0 O O [hwc, a]
24 0 0 0 0 [how, su]
25 O 0 0 0 [how, a]
26 0 ¢ 0 0 [how, u]
27 0 0 0 0 [hoy, su]
28 O O O O [hoy, a]
29 O 0 O O [hoy, u]
30 0 0 0 0 [hoy, i]
31 0 0 0 0 hwc
32 0 0 0 0 hoa
33 0 0 0 O how
34 O O 0 0 hoy
35 0 0 0 36 su
3 6 0 0 0 0 #

2.2.4 Test program results
A PROLOG program similar to the one used for
contextual analysis gives the following results:

input
[#,hz,a,l,a,fi,l,a,hz,su,#]
[#,hz,a,l,a,&l,u,hz,su,#]
[#,hz,a,l,a,&l,i,hz,su,#]
[#,hz,a,l,a,hz,a,l,a,~,#]
[#,hz,a,l,a,hz,u,l,a,~,#]
[#,hz,a,l,a,hz,i,l,a,& #]
[#,hz,a,l,u,hz,a,l,a,&#]
[#,hz,a,l,u,hz,u,l,a,fi,#]
[#,hz,a,l,u,hz,i,l,a,~,#]
[#,hz,a,l,i,hz,a,l,a,fi,#]
[#,hz,a,l,i,hz,u,l,a,& #]
[#,hz,a,l,i,hz,i,l,a,~,#]
[#,hz,a,l,i,hz,i,l,a,fi,#]

[#,hz,u,l,a,~,l,a,hz,su,#]
[#,hz,i,l,a,fi,l,a,hz,su,#]
[#,l,a,l,a,hz,a,l,a,~,#]
[#,l,a,l,a,hz,u,l,a,fi,#]
[#,l,a,l,a,hz,i,l,a,fi,#]
[#,l,a,l,u,hz,a,l,a,fi,#]
[#,l,a,l,u,hz,u,l,a,~,#]
[#,l,a,l,u,hz,i,l,a,&#]
[#,l,a,l,i,hz,a,l,a,fi,#]
[#,l,a,l,i,hz,u,l,a,&#]
[#,l,a,l,i,hz,i,l,a,&#]

[#,l,a,fi,hz,a,l,a,hz,su,#]

output
[#,hoa,a,l,a,fi,l,a,hoa,su,#]
[#,hoa,a,l,a,fi,l,u,how,su,#]
[#,hoa,a,l,a,&l,i,hoy, su,#]
[#,hoa,a,l,a,hoa,a,l,a,fi,#]
[#,hoa,a,l,a,how,u,l,a,~,#]
[#,hoa,a,l,a,hoy, i,l,a,fi,#]

[#,hoa,a,l,u,how,a,l,a,&#]
[#,hoa,a,l,u,how,u,l,a,~,#]
[#,hoa,a,l,u,hoy,i,l,a,&#]
[#,hoa,a,l,i,hoy, a,l,a,fi,#]
[#,hoa,a,l,i,hoy, u,l,a,~,#]
[#,hoa,a,l,i,hoy, i,l,a,fi,#]
[#,hoa,a,l,i,hoy,i,l,a,~,#]

[#,hoa,u,t,a,fi,l,a,hoa,su,#]
[#,hua,i,l,a,fi,l,a,hoa,su,#]

[#,l,a,l,a,hoa,a,l,a,~,#]
[#,l,a,l,a,how,u,l,a,~,#]
[#,l,a,l,a,hoy, i,l,a,&#]

[#,l,a,l,u,how,a,l,a,~,#]
[#,l,a,l,u,how,u,l,a,fi,#]
[#,l,a,l,u,hoy, i,l,a,~,#]
[#,l,a,l,i,hoy, a,l,a,fi,#]
[#,l,a,l,i,hoy, u,l,a,&#]
[#,l,a,l,i,hoy, i,l,a,~. #]

[#,l,a,Lhss,a,l,a,hoa,su,#]

input
[#,l,a,Lhz,u,l,a,hz,su,#]
[#,l,a,g,hz,i,l,a,hz,su,#]
[#,l,u,l,u,fi,hz,a,l,su,#]
[#,l,u,l,u,fi,hz,u,l,su,#]
[#,l,u,l,u,fi,hz,i,l,su,#]
[#,l,u,l,i,i,hz,a,l,su,#]
[#,l,u,l,i,Lhz,u,l,su,#]
[#,l,u,l,i,Lhz,i,l,su,#]
[#,l,u,l,su,hz,a,l,su,#]
[#,l,u,l,su,hz,i,l,su,#]
[#,l,u,l,su,hz,u,l,su,#]
[#,l,u,l,a,hz,su,l,a,~,#]
[#,l,u,l,u,hz,su,l,a,fi,#]
[#,l,u,l,i,hz,su,l,a,& #]

output
[#,l,a,~,how,u,l,a,hoa,su,#]
[#,l,a,~,hoy, i,l,a,hoa,su,#]

[#,l,u,l,u,fi,hss,a,l,su,#]
[#,l,u,l,u,fi,how,u,l,su,#]
[#,l,u,l,u,fi,hoy, i,l,su,#]
[#,l,u,l,i,i,hoy,a,l,su,#]
[#,l,u,l,i,i, hoy, u,l,su,#]
[#,l,u,l,i,Lhoy, i,l,su,#]
[#,l,u,l,su,hoa,a,l,su,#]
[#,l,u,l,su,hoy,i,l,su,#]

[#,l,u,l,su,how,u,l,su,#]
[#,l,u,l,a,hoa,su,l,a,~,#]
[#,l,u,l,u,how,su,l,a,&#]
[#,l,u,l,i,hoy, su,l,a,& #]

CONCLUSION
As a matter of conclusion we hope to have
shown that, through a careful choice of a for-
real language, linguistic rules can be specified
as tractable automata.

Refe rences
A. V. Aho and J. D. Ullman. 1972. The Theory of Pars.

ing, Translation and Compiling, volume 1: Parsing.
Prentice-Hall.

Arab League Arab Organization for Standardization
and Metrology (ASMO), 1982. Data processing 7 bit
Coded Arabic Character Set for Information Inter-
change.

Arab School on Science and Technology 1st Fall Session
Rabat Morocco. 1983. Applied Arabic Linguistics and
Signal ~ Information Processing, P.O. Box 7028 Dam-
ascus Syria.

Arab School of Science and Technology 7th Summer Ses-
sion, Zabadani Valley - Syria. 1985. Informaties and
Applied Arabic Linguistics, P.O. Box 7028 Damascus
Syria.

R. Blach~re and M. Gaudefroy-Demombynes. 1952.
Grammaire de l'arabe classique. G.P. Maisonneuve &
Larose, 3" edition.

1985. Computer Processing of the Arabic Language.
April 14-16, 1985 Kuwait.

M. Fanton. 1997. L'~criture arabe : du manuscrit h
l'ordinateur. La Tribune Internationale des Langues
vivantes, (21), mai.

J. E. Hopcroft and J. D. Unman. 1979. Introduction
to Automata Theory, Languages and Computation.
Addison-Wesley.

K. Lagally. 1992. ArabT~c~X a system for typesetting
arabic user manual version 3.00. Technical Report
1993/11, Universit~t Stuttgart, Fakult~it Informatik,
Breitwiesenstrafle 20-22, 70565 Stuttgart, Germany.
Document ~lectronique fourni avec le logiciel.

A. Lakhdar Ghazal. 1983. L'alphabet arabe et les ma-
chines. In Applied Arabic Linguistics and Signal
Information Processing (Ara, 1983), pages 233-258.

W. Wright. 1859. A Grammar of the Arabic Language.
Cambridge University Press, 3 ~ edition.

33

