
TAGS M-CONSTRUCTED
Uwe Mönnich

Seminar für Sprachwissenschaft
Tübingen University
Wilhelmstrasse 113
D-72074 Tübingen

Uwe.Moennich©uni-tuebingen.de

Abstract

This paper puts TAGs into an algebraic
perspective. The operation of tree adjunc
tion is shown to be a special case of func
tion substitution within a derived theory.
The underlying process of theory deriva
tion is illustrated with the concrete exam
ple of free continuous tree algebras.

1 Introduction

The aim of this paper is to relate two notions. The
first one is that of tree adjunction. The Operation of
tree adjunction serves to seperate dependency and
recursion within a mild extension of the context-free
grammar formalism. The second notion is that of
a polyadic procedure. lt generalizes the operation
of making several identical copies of a string and
was introduced in formal language theory by Fischer
(1968).

The two notions are related in the following way.
The operation of tree adjunction builds a new tree t
from two input trees t 1 and tz by replacing a subtree
of ti displaying a root label identical to tz's root
label with the tree tz and appending the replaced
subtree of ti to an especially marked leaf node of
tz. The name of a polyadic procedure in a tree can
similary be replaced by a tree with dummy symbols
at some of its leaves into which the arguments of the
replaced procedure are to be inserted.

lt has long been realized that the introduction
of higher order auxiliairy symbols into a grammar
formalism is an iterable process that leads to an al
gebraic refinement of the Chomsky hierarchy. The
most general characterization of this iterable pro
cess is due to the ADJ group and presented by them
within the category theoretic framework of finitary
algebraic theories (Bloom et al. 1983). Based on
their presentation, we propose an abstract formu
lation of tree-adjoining grammars in which its rule

108

systems correspond to morphisms of an algebraic
theory that is constructed from the algebraic theory
of context-free grammars along the lines indicated
by the ADJ group.

The notion of an algebraic refinement of the
Chomsky hierarchy was first formulated by Wand
(1975). He shows that solving regular equations in
function spaces over languages leads to a hierarchy
of language families beginning with the regular lan
guages, the contex-free languages and the indexed
language. His conjecture that these language fam
ilies are but the first.steps in an infinite hierarchy
was later confirmed by Damm (1982).

The original motivation for our interest is an al
gebraic formulation of tree adjoining grammars has
come from a long term project on denotational se
mantics for grammar formalisms. Algebraic seman
tics seems to provide a uniform framework for such
an attempt. In the present connection the algebraic
perspective not only adds another characterization
of the tree adjoining languages to the already long
!ist of equivalences with restricted production sys
tems, but it also makes available the whole gamut
of techniques that have been developed in the tra
dition of algebraic language theory (Maibaum 1978,
Mehlhorn 1979, Schimpf and Gallier 1985).

In the interest of a more concrete presentation we
restrict ourselves to the special case of tree algebras.
The basic notions from universal algebra which we
need in the sequel are introduced in the next sec
tion. For reasons of space we have refrained from
supplying the details of the general M-functor.

2 Basic Definitions

Let S be a set of sorts. A many-sorted signature r
is an indexed family (rw,slw € 5•, s E S) of disjoint
sets. A symbol in rw, s is called an Operator of type
(w,s), arityw, sorts and ranki(w), where t(w) de
notes the length of w, In the case of a single-sorted
signature we write rs",s as l:n. The set of n -ary

trees over such a single-sorted signature .L is built
up from a finite set Xn = {x1, ... ,Xn} of variables
using the operators in the expected way: If er E Ln
and t1, ... , tn are n-ary trees, then er(t1, ... , tn) is
an n-ary tree.

The operator symbols induce Operations on anal
gebra of the appropiate structure. A L.-algebra A
consists of an S-indexed faIQily of sets A = (As)ses
and for each operator er E Lw,s, a function er : A w ~

As where A w = Af x · · · x A~ and w = W1 · · · Wn.
The set of n-ary trees T (L, Xn) can be made into
a L-algebra by specifiying the operations as follows.
For every er E Ln and every ti 1 „. ,tn E T(.L,Xn)
we identify O'r (l:,Xnl (t1,. „ , tn) with er(t1, „. , tnl·

3 Lawvere Theories

Our main notion is that of an algebraic (Lawvere)
theory. Given a set of sorts S, an algebraic theory,
as an algebra; is ans· X s·-sorted algebra T, whose
carriers {T (u, v)lu, v E s•) consist of the morphisms
of the theory and whose operations are of the fol
lowing types:

• projection: xr E T(u,ut) (u = u1 ... Un Es•)

• composition: ·u,v,w E T{u,v) x T(v,w) ~
T(u,w)(u,v,wE s•)

• target tupling: { , „. ,)u,v E T(u, v1) x
„. xT(u,Vn) ~ T(u,v)(u1v=v1 „.Vn E $•)

The projections and the Operations of target tu
pling are required to satisfy the obvious identities
for products and the composition Operations are re
quired to be associative:

• xy · (1X1 1 ••• ,cxn)u,v = iXt for all ext E T(u,vl)

• (x) · ß,.„ ,x;;_ · ß)u,v = ß for all ß E T(u,v),
where v = v1 · · ·Vn

• (y · ß) ·IX= 'Y · (ß · "-'.) for all ex. E T(u, v), ß E
T(v,w),yE T(w,z)

•ex.· {x~,„. ,x~)u,u = y for all IX E T(u,v),
whereu=u1 ···Un

By rearranging the ingredients of the prededing
definition algebraic theories can be looked upon as
categories. Under this conceptualization an alge
braic theory T has as objects ITI the set of sort
strings s•, the elernents of the Carrier Sets be
come morphisms in the category theoretic sense and
the following tuples of the projection morphisms
{xi „ „ , x~)u,u function as identities. The axioms
for the composition operation ensure that it behaves

109

as is required by the basic category theoretic pos
tulates for the operation of the same name and the
axioms for target tupling ensure its status as a cat
egory theoretic product.

With S being a singleton, the powerset ~(T(L))
of n-ary trees constitutes the central example of
interest for formal language theory. The carriers
(giT(n, m)ln, m E w) consist of sets of m-tuples of
n-ary trees {(t1, ... , tm)}. The operation of com
position is defined as substitution for the projection
constants and target tupling is just tupling.

The M-construction can be characterized as a
functorial generalization of the device of signature
extension. For lack of space we abstain from giving
the general definition and restrict ourselves to out
lining the relevant features for the case of free con
tinuous theories. Suppose that L is an one-sorted
signature. Elements of s· X s· can then be identified
with elements of w x w. Given a finite set of function
variables F, we obtain the extended signature r. + F,
where (.L + F)n = Ln U {flf E F & arity{f) = n}.
Based on this signature we are able to define the
notion of a finite tree t of recursion-sort n and
recursion-arity w, w E w•. This says that nodes
in t dominating Wi daughters may be labeled with
f E F of arity Wt and that its projection labels come
from Xn = {x1 1 „., Xn}. Given L and F, we can now
define the M-constructed continuous, one-sorted re
cursion theory M(~(T(r.))) as follows. For v E wn,
w E w•, M(gi(T(L)))(w,v) is the powerset of all
n-tuples of trees t = (t1 1 .„, tn), where tt is of re
cursion sort Vt and of recursion arity w. Tupling is
again tupling, the function variables play the role of
"higher-order" projections, but composition is spec
ified as substitution for function-variables which la
be} internal tree nodes; rather than as substitution
for projection labels at the leaves of trees. For
u E wn, v E wP and w E w•, let T' be a set
of p-tuples of trees t' = (tl „„, t~) of recursion ar
ity w and of recursion sort v and Jet T be a set of
n-tuples of trees t = (t1, ... , tnl of recursion arity
v and of recursion sort u , then their composition
T · T' = {t"} = {(tl', .„, t~)} = {{t1 · t', .„, tn · t')} is
defined recursively as follows:

e tt' = {er("[' 1 ' t I 1 • • • 1 "[' q ' t I}}

for tt = er(-r1, . „ , 't' q) (er E Lq)

• t{' = {tj(-r1 ·t'1 „. ,tr·t')}
for tt = fj ('t'1, „. ,'t'r)(fi E Fr)

4 Context~Free and Tree Adjoining
Languages

Consider the example of a single-sorted signature of
monadic algebras:

ro = {e:} r1 = {ala E V}

Due to the fact that r is a monadic signature
trees in T (r, X) may not contain more than a single
variable. Observe that this corresponds exactly to
the rule format of regular (string) languages, where
the righthand sides of production rules are either
strings in the terminal alphabet or concatenations
of such a string with a single non-terminal. The reg
ular language v•, e.g., is the solution of the set of
equations {x = a(x)ja}(a E V) in the space p(T(r)).
lt should be pointed out that v· and the set of all
variable-free trees in the monadic signature r, in
troduced a moment ago, are, strictly speaking, not
the same sets. They are nevertheless related by an
obvious one-to-one correspondence.

Once the signature r is extended with one nullary
and one monadic variable, the following example
shows tliat we obtain the context-free language l =
{a%n} as solution in the same space p(T (!:)), where
r1 = {a, b}:

G = (r, F,S, E}

Fo ""' {S} F1 = {F}

E={ S = {F(t:),t:} }
F(x) = {a(F{b(x))), a(b{x))}

n n ----....---....
l(E, S) = {a(a „. (b(b ... (e) „.)}

The pair of equations E in the preceding example
is represented by a morphism

E =(Eo, El) : 0 · 1 ~ 0 · 1

in the recursion theory M(P(T(a))) and the lan
guage L = {anbn} is the first component ofthe least
fixpoint that solves the equational system E.

Observe again that the preceding equational sys
tem looks suspiciously similar to the usual produc
tion system for the "same" language in a concate
native signature r 1

:

G'=(r',F,S,P)

ro ={t:,a,b} l:2 ={'"""'} Fo ={S}

P = {S ~ el""'(a, .-...(S, b))}

l(G', S) = {.-...(a, ""'(... , '"""'(t:, b) ... b) ...)}

where n occurrences of a precede the same num- ,
ber of occurrences of b for n ;:::: 0.

110

The foHowing result expresses the fact that the
situation above characterizes already the whole dass
of context-free languages: Every context-free lan
guage can be represented as the solution of a mor
phism in an algebraic theory that is M-constructed
on the basis of a monadic tree theory.

There is actually a mechanical procedure that al
lows one to convert an arbitrary context-free gram
mar G = (V, N, S, P} in Chomsky Normal Form
into a weakly equivalent equational system E =
(rv, F, E} that has asolution in the space of monadic
trees (Maibaum 1974). The procedure consists in
first forming the monadic signature r v correspond
ing to the terminal vocabulary V of G:

(rv)o ={t:} (rvh ={V}

The new function variables F are similarly in a one
to-one correspondence with the nonterminals of G:

Fo = {S} F1 ={AJA E N}

The equational system E is then obtained through
the following replacements:

S~AB

s ~ a.
S-H
A~BC

A~a

:::} S = {A(B(t:))}
:::} S = {a(t:)}
:::} S={e}
=? A(x) = {B(C(x))}
:::} A = {a(x)}

for A :f S
for A :f S

l(G, S) equals the least solution of E at its S
component.

Recall that context-free languages are also cap
tured by the notion of a frontier or yield of a regular
tree set. The obvious question that presents itself in
this connection is which language family is reached
by the addition of monadic function variables to an
arbitrary signature.

In the way of motivating the ans wer to this ques
tion it is useful to consider once more the exam
ple of a simple morphisrn E 1

: 0 · 1 -+ 0 · 1 in an
M-constructed recursion theory that is based on a
signature r of arity 3:

[= I:o U .1:3 where I:c = {a, b, c; d} and t3 = {S}

F = Fo U F1 where Fo = {S'} and F1 = {S}

E = {S' = {S(t:)}, S(x) = {S(a., S(S(b, x, c)), d), x}}

In tree form the last equation has the following
shape:

s
11\
Q s d S(x)=

1

s
11\
b X C

This system specifies the string language
{anbncndn}. Apart from minor notational mod
ifications the grammar in the last example corre
sponds to a well-known tree adjoining grammar.
Note that apart from the start symbol the only other
nonterminal is of arity one. As was the case in
connection with the context-free string languages,
the preceding example is a particular instance of
the general situation. The tree adjoining languages
correspond to languages that are M-constructed
from arbitrary signatures through the addition of
monadic function variables.

As in the case of context-free gramrnars there
exists a mechanical procedure that allows one to
produce for any given tree adjoining grarnmar G a
weakly equivalent equational system E that spec
ifies the "same" set of trees. Strict identity is not
guaranteed for grammars that contain nonterminals
with variable arities. Toremain within the algebraic
setup, nonterminals that label nodes which brauch
out into different numbers of daughters, have to be
assigned to different components of the indexed set
.L Otherwise the procedure that resulted in the sys
tem of the example is completely general. Terminals
and nonterminals alike are collected into the new
signature r. All nonterminals that are free for an
adjunction become duplicated by a monadic mem
ber of t}le set of function variables F. Adjunction
constraints have to be taken over with one modifi
cation: When sa is the empty set the nonterminal
has no duplicate in F.

5 Conclusion

The M-construction in its general form is conceived
for Lawvere theories regarded as categories. The
main prerequisites a category of such theories has to
satisfy in order for it to be M-able is the existence
of a free theory and of coproducts. Both conditions
are fulfilled by the powerset of n-ary trees.

In compliance with the spirit of algebraic seman
tics I have considered tree adjoining languages as
solutions of morphisms in a derived theory. Under
the perspective of an operational semantics an ana
loguous characterization can be obtained by consid
ering tree adjoining grammars as a restricted form of
context-free tree grammars (Engelfriet and Schmidt

111

1977). This has been the topic of a previous publica
tion where it is shown that not only any tree adjoin
ing language is presentable as a monadic context
free tree language, but that the opposite implication
holds as well (Mönnich 1997). The proof in that
paper for this opposite direction of the implication
is easily adapted to the framework of denotational
semantics. As was adumbrated in the introductory
section, the particular conception of denotational se
mantics that is being developed within the algebraic
tradition promises to provide the right level of ab
straction from where to investigate the connections
between different types of grammatical formalisms.

References
Bloom, S.L., J.W. Thatcher, E.G. Wagner, and J.B.

Wright. 1983. Recursion and iteration in contin
uous theories: The M-construction. J. of Com
puter and System Sciences, 27(2):148-164.

Damm, Werner. 1982. The IO- and OI-hierarchies.
Theoretical Computer Science, 20:95-207.

Engelfriet, Joost and E.M. Schmidt. 1977. IO and
OI, part 1. J. Comput. System Sei., 15:328-353.

Fischer, Michael J. 1968. Grammars with macro
like productions. In Proceedings of the 9th Annual
Symposium on Switching and Automata Theory,
pages 131-142. IEEE.

Joshi, A.K. and Y. Schabes. 1997. Tree-adjoining
grammars. In G. Rozenberg and A. Salomaa, ed
itors, Handbook of Formal Languages Val. 3: Be
yond Words, volume 3. Springer, pages 69-124.

Maibaum, T.S.E. 1974. A generalized approach to
formal languages. J. Comput. System Sei„ 8:409-
439.

Maibaum, T.S.E. 1978. Pumping lemmas for term
languages. Journal of Computer and System Sci
ence, 17:319-330.

Mehlhorn, Kurt. 1979. Parsing macro grammars
top down. Information and Control, 40:123-143.

Mönnich, U. 1997. Adjunction as substitution. In
G-J. M. Kruijff, G.V. Morrill, and R.T. Oehrle,
editors, Formal Grommar 1997: Proceedings of
the Conference. Aix-en-Provence, pages 169-178.

Schimpf, Karl and Jean Gallier. 1985. Tree push
down automata. Journal of Computer and Sys
tem Sciences, 30:25-40.

Wagner, E.G. 1994. Algebraic semantics.
In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Com
puter Science Vol. 3: Semantic Str'1ctures. OUP„
pages 323-393.

Wand, Michell. 1975. An algebraic formufation of
the chomsky hierarchy. In Category Theory Ap
plied to Computation and Control, number 25 in
Lecture Notes in Computer Science, pages 209-
213.

