
Towards a Workbench for Schema-TAGs*

Karin Harbusch and Friedbert Widmann and Jens Woch
University of Koblenz-Landau, Computer Science Department

E-mail: {harbuschjwidijwoch}©uni-koblenz. de

Abstract
In the following the components of a workbench for the
grommar formalism of Schema-Tree Adjoining Gram
mars (S-TAGs) are outlined. This workbench can also
serve as a workbench for pure TA Gs because it provides
a component which transforms an arbitrory TAG into
an S-TAG in a non-trivial manner. Another inter
esting property of the workbench is that it provides a
parser, which is realized as a reversible component to
generote as weil.

lnt rod uction
The formalism of augmenting Tree Adjoining Grom
mars with schemata was introduced in [Weir 87) in or
der to compress syntactic descriptions. For that pur
pose, a TAG (see, e.g., (Joshi 86]) is extended in order
to provide the facility to specify a regular expression ··
(RE). A RE is of type a.b, a+b, a+, a• and a<OJn) 1
where a, b can uniquely refer to child nodes (via Gorn
numbers) or a tree-modifying reference of the form g1-

g21 where g1, g2 are Gorn numbers and g2 denotes a
subtree of g1. This expression means that the subtree
g, in gi is ignored and replaced with E. Finally, a,b
can be regular expressions themselves. Regular expres
sions are annotated at each inner node of an elementary
tree. The resulting tree is called a schematic elemen
tary tree. Such a tree denotes an elementary tree set
just as a regular expression denotes some regular set.
Thus, an individual scheme corresponds to a - possi
bly infinite - set of elementary trees, but itself is not
the structural element to build derivation trees of.

In order to stress the power of compressing a ~am
mar let us reconsider the coordination constru~tio~ pro
posed in (Weir 87). In Fig. 1, the root node NP of the
substitution tree t 1 (which is element in the set of initial
trees I) is annotated with a regular expression. In this
regular expression, the Garn number lnl refers to the

•Tbis work is partially funded by the DFG - German
Research Foundatioo - uoder grant HA 2716/1-1.

58

n-th daughter of the node. For an illustration of this
reference in the figure the numbers are explicitely anno
tated to the individual nodes. For instance, the regular

~121+(121+111.121)+.131.021+111.121)

DET N CONJ

2 3

el-t1 : NP

N N N
Bob Bill Mcry Sue end

N

the dog

Figure 1: Coordination of NPs
expression 121 at the node NP in t1 r~presents the tree
with the root NP and the unique daughter N - e.g.,
producing "John". The operation "." concatenates sib
lings in the same currently evaluated elementary tree.
Accordingly, lll.J21 produces an elementary tree where
DET and N are the two daughters of NP ("a man").
The operation "+" enumerates alternative elementary
trees. For instance, the regular expression 121 + Jll.121
enumerates the two trees mentioned above. The expo-
nent "+" d " „ d . fi . s an * pro uce m mte sets of elementary

. trees where the construction marked with such an expo
nent can be repeated arbitrarily often ("+" represents
the infinite repetition exclusing zero occurrences and
"*" indusing zero). For instance, tt can produce "Bob
Bill Mary Sue and the dog" (see tree el-tl in Fig. 1) but
not "and the dog" because (121 + lll.121)+ prevents the
zero repetition so that at least N occurs. Furthermore
a single "and" cannot be produced because no alterna
tive in the regular expression at the root node starts
with 131. A finite number of repetitions can be written
with the exponent jxfUlkJ, where the component with
the Gorn number x occurs at least l and up to k times.

Note, that the example is not lexicalized because
Weir's dissertation proposal was earlier published than
the definition of lexicalization (cf. (Schabes 90)). The
coordination with Schema-TAGs works similarly with

lexicalization. Accordingly, the root node ha.5 two chil
dren (Simple.NP..!- and CONJ) and the RE is "lll +
(111+ .121.JII)". The substitution tree Simple.NP has two
children (DET and N) and its root node is annotated
with "lll + IIl.121" ·

Description of the S-TAG Workbench
In the following, the components of an S-TAG work
bench (STAGWB) are outlined. In the first subsec
tion a facility to transform arbitrary TAG grammars
(in our case the UPENN tree bench [Daran et al. 94])
into schematic trees. Then the reversible compo
nent for parsing and generation is outlined (for details
s. [Woch et al. 98]).

Writing Grammar and Lexicon Rules
With respect to lexicalized TAGs [Schabes 90)) where
each tree in the set of initial and auxiliary trees has
at least one lexical leaf {called anchor) no lexicon com
ponent is required (cf. XTAG [Daran et al. 94]). But
since the workbench should not determine the gram
mar formalism it is possible to specify a non-lexicalized
TAG ag well.

A main emphagis lies on the facility to transform an
arbitrary TAG into an STAG. Obviously, an arbitrary
TAG G can trivially be transformed into an S-TAG
G' by annotating the concatenation of all daughters
from left to right at each inner node of each elemen
tary tree. Obviously, this transformation involves no
compression. Therefore, the transformation component
of the STAGWB produces an S-TAG which guarantees
that each label at the root node occurs only once in the
set of initial and auxiliary trees.

The component pedorms the following steps. Firstly,
in all elementary trees all subtrees which do not contain
the foot node are rewritten by substitution in order to
find shared structures1 • Since new non-terminals must
be introduced to prevent the grammar from overgen
eration, the adjoinable auxiliary trees are duplicated
and root and foot nodes are renamed by the new non
terrninals. Now, all alternatives for the same root node
are collected. For each elementary tree where the root
node is labelled with X (b1, ••• , bn), a new schematic
tree sx is introduced to the S-TAG G' where its root
node is labelled with X and the children result from enu
merating all occurring children in all elementary trees
bli „., b0 without repeating the same label. In the

1 Here, one can decide whether the structures are col
lapsed, although their features may differ. In the fust case
the disjunction of both feature descriptions is stored to
gether with the history where they originally helonged to.
Accordingly, more condensed structures are produced but
the interpretation of the feature structures becomes more
complicated.

59

(((("NP" . ""))) (({("DetP" . "")) :substp T))
((((" N" . "")) :headp T)))

{{(("NP".""))) (((("N". "")) :headp T)))
(((("NP" . "r"))) (((("N" . "")) :headp T))

(l(\ 'S" . "")) :substp T)))
(({{"NP".""))) {((("DetP". "")) :substp T))

(((("N". "r")):constraints "NA"
:constrainMype :NA)

(((("N" . "")) :headp T))
(((("S" . "")) :substp T))))

(((("NP" . ""))) {((("G" . '"')) :headp T)))
(((("NP" . "g''))) (((("NP" . "")) :substp T))

({(("G" . "'')) :headp T)))

.J.l
((WNP" . "")) llJ.121+121+121.1a1 + lll-141 + 151 + J6l.[51)

(({{"DetP" . '"')) :substp T))
(((("N" . "")) :headp T))
((((''S". "")) :substp T))
(((("N°" . "r'')) :suhstp T))
({(("G" . "")) :headp T))
{((("NP" . "")) :substp T)))

({{("N°" . "r")) llf.[21
:constraints "NA" :constraint-type :NA)
(((("N" . "")) :headp T))
{{WS" . "")) :substp T)))

Figure 2: Gramma.r transformation

next step the annotation of the root node of sx is con
structed by swnming up all alternatives according to
b1, „., b0 where all labels are rewritten as numerical
references pointing at the respective child.

An instance of a grammar transformation is shown
in Fig. 22• Note, that here the first step of introducing
substitutions does not have to do much, because most
lexicalized TAGs already use substitution. The only
new substitution node is N°.

The resulting REs can be reformulated applying the
following transformation rules:

1. O')'(llk} .')'ß = O')'(llk+l) ß,

2. a('Y.<5i)ß + „. + a('Y.om)ß = 0')'.(01 + „. + Om)ß

3. O"'fß +aß= cry(Olllß

where o, ß, ')', 01 , .„, Om are arbitrary complex REs.
Note, that different compressing strategies result in

different REs. For analysis grammars the rule of fac
toring out common prefixes is convenient, whereag the
factorization according to common hcads is more ad
equate in generation. E.g. in the example in Fig. 2
for analysis the two alternatives lll.121 and IIl-141 re
sult in IIl.(121 + 141). For generation the alternatives
lll.121 +]21 +!21-131 result in ll l(OJI) .121+121.131. Addition
ally, this example illustrates that an LD/LP-Schema-

2This transformation does not show the unification struc
tures (c.f. footnote 1).

TAG can be advantageous especially for generation be
cause there the alternative !2!.131 can easily be incorpo
rated in the compact expression.

Now, the automatically introduced substitution trees
can be replaced with their original substructures and
furthermore all added auxiliary trees can be eliminated
again if desired. So the graaunar becomes as lexical
ized as it was before. Finally, in order to introduce cu•
to the annotations the following process is carried out.
According to the annotation of each substitution node
r substitution trees s1 and s2 are identified which only
' differ in one leaf l in s1 • For these candidates the struc-

ture must match beside the path to l. If so, the substi
tution of tree s1 is explicitely realized and r is modified
to refer to s1 - <path-to-l> instead of referring to s2.

S-TAG Parser
Tobe able to deal with REs and substitutions the parser
extends the Earley-based TAG-parser by [Schabes 90]
as follows:

Instead of computing the set of trees described
by schemata (which is impossible due to its infin
ity) explicitely, the REs are interpreted as follows
(cf. [Harbusch 94)): To indicate a certain position, 0 is
used to point into the current RE, i.e. a: 0 ß indicates,
that a: already has been computed. Then, two func
tions are introduced, namely SHIFT(t/J), which shifts
0 to the right, a.nd NEXT(t/i), which returns a set of
nodes to be computed next. SHIFT is performed in
each parsing step, in which the computation of a cer
tain node is completed (indicated by raising the dot
position to "ra"): scanning of terminals (scanner), the
prediction of the right part3 of auxiliary trees (right
prediction) in which no prediction toök place, and the
completion of a root node of a.n auxiliary tree (right
completion).

The output of NEXT is responsible for the computa
tion of all alternatives given in the currently considered
RE. Thus, each alternative g in ß of NEXT(a: 0 ß)
has to be taken into account for the prediction of new
items. This is done in move dot dovn. Whenever a.n
elimination ja - bl occurs, it is deferred until node b is
actually computed. Instead of processing b an f-scan
is simulated. This usually is done in scan obviously,
but also may take place in left prediction, if b is
non-terminal.

In order to refiect substitutions, two new Operations
are introduced. The formerly forbidden case of non
terminal leafs now triggers the prediction of all possible

3 Due to the possibility of arbitrary mix-ups of prece
dences of children by REs, the expressions "left/Tight to"
are to be understood in a more temporal tha.n local ma.n
ner, i.e. "left of the foot node" encloses all those items tha.t
ha.ve been compute<l before computing the foot.

60

substitution trees. On the other hand, the formerly
end-test-only state of being at position "ra" for non
auxiliary roots now serves for the completion of pre
dicted substitution trees.

S-TAG Generator

As modern workbenches (cf„ e.g., the workbench
PAGE for Head-driven Phrase Structure Grammar
[Netter, Oepen 97]) usually provide a generator, our
parser is parametrised to work for generation accord
ing to the idea of bidirectional processing (cf„ e.g.,
[Neumann 941).

As outlined by {Shieber et al. 90] a na'ive structure
driven top-down generator may not terminate (e.g. for
genitive phrases in English and German). Furthermore
the approach is inefficient because the input does not
guide the gl!neration process. Instead of that, possible
syntactic structures are realized and their correspond
ing logical forms are compared to the semantic input
structure.

A more natural way of guiding the generation pro
cess is to make it driven by the semantic input struc
ture (indexing on meaning instead of indexing on string
position). Generally speaking such generator predicts
semantic heads. Two different procedures continue
searching for a connection to sub- and the super
deriviation tree.

In the terrninology of [Shieber et al. 90] the gener
ator predicts pivots. A pivot is defined as the lowest
node in the tree such that it and all higher nodes up
to the root node or a higher pivot node have the same
semantics. According to the definition of a pivot node
the set of grammar rules consists of two subsets. The
set of chain rules consists of all rules in which the se
mantics of sorne right-hand side elernent is identical to
the semantics of the left-hand side. The right-hand
side element is called the semantic head. The set of
non-chain rules contains all rules which do not satisfy

'this condition. The traversal will work top-down from
the pivot node only using non-chain rules whereas the
bottom-up steps which connect the pivot node with the
root node only use chain rules.

Adapting this mechanism to the generation of lex
icalized TAGs means that the chain rules are corn·
pletely deterrnined by the elementary tree under
consideration4 . Adjoining and substituLion rnpresent
the application of non-chain rules. In order to illus
trate this kind of processing let us assume that the
input structure is (frequently{see(John,friends))). Fur
thermore, we assume that the grammar allows to pre-

4 Since empty semantic hea.ds can be associa.ted with their
syntactic rea.lization they can be processecl in the same
manner.

dict the trees described in Fig. 3. Since bere is not the
space to outline the specification lists of the individual
nodes, the semantics of the trees is informally anno
tated at the nodes where x and y are variables to be
filled during the unification at thut node.

a1: S mod(x) a2: VP mod(x)

A A
ADV S x ADV VP x

frequently frequently

i1: S see(x,y)

A
NP.j. x VP

A
V NP.j.y

see

John

b: NP friends

1
N

friends

Figure 3: Predictible pivots

In a first step all predictible pivots according to the
input structure can be written to the one and only item
set during processing. This construction represents tbe
unordered processing of the semantic structure. The
bracketing structure of the logical form is achieved by
evaluating the semantic expression associated with each
elementary tree (e.g. for tree a1 mod(x) wbere x is a
value filled by the subtree of the foot node. The pro
cessing is successful only if a derivation tree can be con
structed wbere all elements of the logical form occur
only once6 •

Concerning the example two realizations for tbe in
put specification can be produced. The processing of
the one with the sentential adverb (adjoing of a1) is ob
vious whereas the adjoining of a2 is not so clear. lt also
works because the variable x at the foot node is unified
with the VP node of h wltere according to the pivot
definition the semantics on the spine from the root to
the V node is identical. So, x contains the whole ex
pression (see(John,friends)) and the check whether tbe
bracketing structure is correct (i.e. the dependencies,
specified in the logical form), is successful as weil.

Final Remarks
All modules are implemented in
JAVA [Gosling et al. 98]. Currently we run our trans
formation module to build a Schema-TAG equivalent
to the English T~L\G by [Doran et al. 94]: Furthcrmore,
we test how the average runtime varies for TAGs and
Schemu-TAGs. The differing size and depth of elemen
tary trees is of special interest in incremental generation

5Since the bracketing structure is tested explicitely dur
ing the combination of elementary trees the accepting con
dition can be weaker so that the logical form equivalence
problem (cf. [Shieber 93]) does not occur here.

61

(cf. [Harbusch 94)) where the size of structures influ
ence the time in which the processing can be finished
and results can be handed over to other components.

Another topic of current considerations is how to de
fine LD/LP-Schema-TAG which are especially inter
esting for gen.eration. We assume that it suffices to
rewrite the NEXT function to adapt our parser to run
LD/LP-Schema-TAGs on the structural level. Our
suggestion is that the separation of structural combi
nation and linear ordering saves processing time, espe
cially for generation.

References
[Doran et al. 94] C. Doran, D. Egedi, B.A. Hockey,

B. Srinivas, M. Zaidel. XTAG System - A Wide
Coverage Grammar for English. In the Proceedings
of the 15th COLING, Kyoto/Japan, 1994.

[Gosling et al. 98] J. Gosling, B. Joy, and G. Steele.
The Jaua Language Specification Addison-Wesley,
Reading, 2nd. ed. 1998

[Harbusch 94] K. Harbusch. Incremental sentence pro
cessing with Schema-Tree Adjoining Grammars. In
the procs. of the :Jrd International TAG+ Work
shop, Paris, Frankreich, September 1994, TALANA
Report 94-01, pp. 41-44.

[Joshi 86] A.K. Joshi. The convergence of mildly
contextsensitive grammar formalisms. In T. Wasow,
P. Seils, eds., The Processing of Linguistic Structures.
MIT-Press, Cambridge, MA/USA, 1986.

[Netter, Oepen 97] K. Netter, S. Oepen. PAGE
- Platform for Advanced Grammar Engineering.
Sildes (at http://cl-www.dfk.i.uni-sb.de/pagegifs/sli
des.html), Saarbrücken/Germany, 1997.

[Neumann 94] G. Neumann. A Uniform Computa
tional Model for Natural Langv.age Parsing and Gen
eration. PhD thesis, Saarbrücken, Germany, 1994.

[Shieber et al. 90] S.M. Shieber, F.C.N. Pereira, G. van
· Noord, R.C. Moore. Semantic-Head-Driuen Genera

tion. Computational Linguistics, 16(1): 30-42, 1990.
.[Shieber 93) S.M. Sltieber. The Problem of Logical

Form Equiuafonce. Computational Linguistics, 19(1):
179-190, 1993.

[Schabes 90] Y. Schabes. Mathematicul and Computa
tionai Aspects of Lexicalized Grammars. PhD thesis,
Philadelphia, PA/USA, 1990.

[Weir 87] D. Weir. Characterising Mildly Context
Sensitive Grammar Formalisms. PhD. Proposal, Uni
versity of Pennsylvania, Philadelphia/USA, 1987.

[Wach et al. 98] J. Woch, F. Widmann, l{. Harbusch.
A Reversible Approach to Parsing and Generation
of Schema-TAGs. Teclmical Report, University of
Koblenz, forthcoming.

