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Abstract 

This paper describes an automatic, context-sensitive, word-error correction system based 
on statistical language modeling (SLM) as applied to optical character recognition (OCR) post- 
processing. The system exploits information from multiple sources, including letter n-grams, 
character confusion probabilities, and word-bigram probabilities. Letter n-grams are used to 
index the words in the lexicon. Given a sentence to be corrected, the system decomposes each 
string in the sentence into letter n-grams and retrieves word candidates from the lexicon by 
comparing string n-grams with lexicon-entry n-grams. The retrieved candidates are ranked by 
the conditional probability of matches with the string, given character confusion probabilities. 
Finally, the wordobigram model and Viterbi algorithm are used to determine the best scoring 
word sequence for the sentence. The system can correct non-word errors as well as real-word 
errors and achieves a 60.2% error reduction rate for real OCR text. In addition, the system can 
learn the character confusion probabilities for a specific OCR environment and use them in 
self-calibration to achieve better performance. 

1 Introduction 

Word errors present  problems for various text- or speech-based applications such as optical char- 
acter recognition (OCR) and voice-input computer  interfaces. In particular, though  current OCR 
technology is quite refined and robust, sources such as old books, poor-quali ty (nth-generation) 
photocopies,  and faxes can still be difficult to process and may  cause many  OCR errors. For OCR to 
be truly useful in a wide  range of applications, such as office automat ion  and information retrieval 
systems, OCR reliability mus t  be improved.  A me thod  for the automatic correction of OCR errors 
wou ld  be clearly beneficial. 

Essentially, there are two types of word  errors: non-word errors and real-word errors. A non- 
word  error occurs w h e n  a word  in a source text is interpreted (under OCR) as a string that does 
not  correspond to any valid word  in a given word  list or dictionary. A real-word error occurs 
w h e n  a source-text word  is interpreted as a string that actually does occur in the dictionary, but  is 
not  identical wi th  the source-text word.  For example, if the source text "John found the man"  is 
rendered as "John fornd he man"  by an OCR device, then "fornd" is a non-word  error and "he" is 
a real-word error. In general, non-word  errors will never correspond to any dictionary entries and 
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will include wildly incorrect strings (such as "#- -&&')  as well as misrecognized alpha-numeric 
sequences (such as "BN234" for "8N234"). However,  some non-word  errors might  become real- 
word  errors if the size of the word  list or dictionary increases. (For example, the word  "ruel "~ 
might  count  as a non-word  error for the source-text word  "rut" if a small dictionary is used for 
reference, but  count  as a real-word error if an unabr idged dictionary is used.) While non-word 
errors might  be corrected wi thout  considering the context in which the error occurs, a real-word 
error can only be corrected by taking context into account. 

The problems of word-error  detection and correction have been s tudied for several decades. 
A good survey in this area can be found in [Kukich 1992]. Most traditional word-correction 
techniques concentrate on non-word error correction and do not  consider the context in which the 
error appears. 

Recently, statistical language models  (SLMs) and feature-based methods  have been used for 
context-sensitive spelling-error correction. For example, Atwell and Elliittm [1987] have used a 
part-of-speech (POS) tagging method  to detect the real-word errors in text. Mays and colleagues 
[1991] have exploited word  trigrams to detect and correct both the non-word and real-word errors 
that were artificially generated from 100 sentences. Church and Gale [1991] have used a Bayesian 
classifier me thod  to improve  the performance for non-word error correction. Golding [1995] has 
applied a hybrid Bayesian method  for real-word error correction and Golding and Schabes [1996] 
have combined a POS trigram and Bayesian methods  for the same purpose.  

The goal of the work  described here is to investigate the effectiveness and efficiency of SLM- 
based methods  applied to the problem of OCR error correction. Since POS-based methods  are not  
effective in dist inguishing among  candidates with the same POS tags and since methods  based on 
word-t r igram models  involve extensive training data and require that huge  word-t r igram tables 
be available at run time, we used a word-bigram SLM as the first step in our investigation. 

In this paper, we describe a system that uses a word-bigram SLM technique to correct OCR 
errors. The system takes advantage of information from mult iple sources, including letter n- 
grams, character confusion probabilities, and word  bigram probabilities, to effect context-based 
word  error correction. It can correct non-word as well as real-word errors. In addit ion,  the system 
can learn the character confusion probability table for a specific OCR environment  and use it to 
achieve better performance.  

2 The Approach 

2.1 Problem Statement 

The problem of context-based OCR word-error  correction can be stated as follows: 
Let L = {wl, w~, ..., win} be the set of all the words  in a given lexicon. For an input  sentence, 

S = sl, ..., sn, p roduced  as the ou tput  of an OCR device, where  sl, ...,s,~ are character strings 
separated by spaces, find the best word  sequence, ~?g = wl,  w2, ..., w, ,  for wi E L, that maximizes 
the probability pr (W[ S): 

I?V = argmaxw (pr( WI S ) ) (1) 

"Ruel" is an obscure French-derivative word meaning the space between a bed and the wall. 
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Using Bayes' formula, we can rewrite 1 as: 

argmaxw (Pr( W I S ) ) 

= argmaxw( pr(W)* pr(SlW))  
S ) 

= argmaxw(pr(W ) ,  pr(S[W)) (2) 

The probability pr(W) is given by the language model and can be decomposed as: 
n 

pr(W) = I I  pr(wilwl.i_l) (3) 
i = 1  

where pr(wilw~ .i- ~) is the probability that the word wi appears given that wl, w2, • •., wi_ ~ appeared 
previously. 

In a word-bigram language model, we assume that the probability that a word w~ will appear 
is affected only by the immediately preceding word. Thus, 

and 

pr(w, = p (w, lw,_l) (4) 

pr(W) = I~ Pr(w*lw'-~) (5) 
i = 1  

The conditional probability, pr(SIW ), reflects the channel (processing) characteristics of the 
OCR environment. If we assume that strings produced under  OCR are independent  of one 
another, we have the following formula: 

Pr(SIW) = r I  Pr(S~lw~) (6) 
i = 1  

So, 
= argmaxw(Pr(W ) ,  pr(SlW))  

n 

= argmaxw(l~ Ipr(wilwi_l) • pr(silwi)) (7) 
i = 1  

Thus, the problem of calculating W is reduced to estimating the word-bigram probability, pr (wil w~_ 1), 
and the word confusion probability, pr(silw~). The word-bigram probability, pr(wi[wi_ ~), can be 
estimated by a maximum likelihood estimator (MLE): 

prML(WiiW,_i ) = C(Wi-1, Wi) 

where c(wi_x) is the number of times that wi-1 occurs in the text and c(wi_~, w~) is the number of 
times that the word bigram (Wi_l, wi) occurs in the text. 

However, the estimatation of unseen bigrams is a problem. We use a back-off model  similar to 
that described in [Dagan & Pereira 1994] to estimate the word-bigram probabilities in our system. 

If we already have estimates of the probabilities pr(wilwi_l) and pr(si[wi), the Viterbi algo- 
rithm [Charniak 1993] could be used to determine the best word sequence for the given sentence. 
Details of the back-off model and Viterbi algorithm can be found in [Dagan & Pereira 1994] and 
[Charniak 1993]. 
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2.2 Estimate of  Channel  Probabil it ies  and Learning of  Character Confus ion  Table 

The probability pr(s lw)- - the  conditional probability that, given a word w, it is recognized by the 
OCR software as the string s---can be estimated by the confusion probabilities of the characters in 
s if we assume that character recognition in OCR is an independent process. 

We assume that an OCR string is generated from the original word by one or more of the 
following operations: (a) delete a character; (b) insert a character; or (c) substitute one character 
for another. Under such circumstances, a dynamic programming method can be used to determine 
the operations that maximize the conditional probability when transforming the original word to 
the OCR string, given a character confusion probability table. 

Let tl,  t~ . . .  ti be the first i characters of the string that is produced by the OCR process for 
a source word s and let s l , s 2 . . . s j  be the first j actual characters of ~. Define pr(il j  ) to be the 
conditional probability that the substring sl,j is recognized as substring tl.i by the OCR process, 
i.e., pr(tl,ilSl.j). The dynamic programming recurrence is given as follows: 

pr(i - l l j )  * pr(ins(ti)) 
pr( i l j  ) = max pr(i l j  - 1) • pr(del(sj)lsj) (8) 

p r ( i -  l [ j -  1)*pr( t ,  lsj) 

where pr(ins(y))  is the probability that letter y is inserted. 
pr(del(y)ly ) is the probability that letter y is deleted. 
pr(xly) is the probability that letter y is replaced by letter x. 

For example, suppose that source word "flag" is recognized as "flo" by an OCR device. For- 
mula 8 may determine that a sequence of four operations--(1) substitute "f" for "f ' ;  (2) substitute 
"T' for "l ' ;  (3) substitute "a" for "o", and (4) delete "g"--maximizes the conditional probability 
pr("flo"l"flag"). Then the probability of "flag" being rendered as "flo" can be estimated as: 

pr("flo"l"flag')  = pr("f"l"f" ) * pr("l"l"l" ) * pr("o'l"a") • pr(del("g")l"g") 

This method is similar to what  was described in [Wagner 1974] where the minimum edit distance 
between two strings was computed. The minimum edit distance is the min imum number  of oper- 
ations that transform the source string to the target string. Note that to effect spelling correction, 
we could include character transposition probabilities. 

If we have no information about the character confusion probabilities, we can estimate them 
as: 

pr(ylx) = { ~ 7  i f y = x  
- -  otherwise (9) 

1 - - ~  
pr(dd(x)lx)  = pr( ins(x))= i (10) 

where N is the total number  of printable characters. 
The estimator a can be regarded as the probability that a given character is correctly recognized. 

Our experiments show that system performance is very sensitive to the value of a, especially for 
real-word error correction. For example, if a is very high, then the probability pr(sls ) will be too 
high to be affected by subsequent processing and will not be changed. On the other hand if a is 
very low, some correct words may be detected as real-word errors and will be changed. 

If we have both the original text and the corresponding OCR output and if we assume that the 
errors made by a particular OCR system are not random (but semi-deterministic), we can count the 
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cases of substitution, deletion, and insertion using a method similar to computing the minimum 
edit distance between strings [Wagner 1974] and we can estimate the probabilities using formulas 
similar to those in [Church & Gale 1991]: 

pr(ylx ) = num(sub(x ,y) ) /num(x)  (11) 

pr(del(x)) = num(del(x)) /num(x)  (12) 

pr(ins(y)) = num(ins(y)) /num( Kall letters> ) (13) 

Obviously, in practice, we typically do not have the original text to compare to the OCR text or 
to use for correction. Moreover, as noted in [Liu et al. 1991], the character confusion characteristics 
are heavily dependent  on the OCR environment, encompassing everything from the performance 
biases of the specific OCR software to the size of characters in the source text, fonts used, individual 
character types, and print quality of the text being processed. It is not feasible to train on texts to 
acquire character confusion probabilities for each OCR environment.  

The current system employs an iterative learning-from-correcting technique that treats the cor- 
rected OCR text as an approximation of the original text. The system starts by assuming all 
characters are equally likely to be misrecognized (with some uniform, small probability) and 
learns the character confusion probabilities by comparing the OCR text to the corrected OCR text 
after each pass. Then the learned character confusion probabilities are used for the next pass 
processing (feedback processing). This method proves to be quite effective in improving system 
performance. 

2.3 Generation of Word Candidates for a Given String 

Ideally, each word, w, in the lexicon should be compared to a given OCR string, s, to compute the 
conditional probability, pr(wls ). However, this approach would be computationally too expensive. 
Instead, the system operates in two steps, first to generate the candidates and then to specify the 
maximal number of candidates, N, to be considered for the correction of an OCR string. 

In step 1, the system retrieves a large list of word candidates for a given string. To nominate 
candidates, we use a vector space information retrieval technique [Salton 1989]: all the words in 
the lexicon are indexed by letter n-grams and the (OCR) string, also parsed into letter n-grams, is 
treated as a query over the database of lexicon entries. In particular, all words (or OCR strings) 
are indexed by their letter trigrams, including the 'beginning' and 'end'  spaces surrounding the 
string. Words of four or fewer characters are also indexed by their letter bigrams. For example: 

"the" ~ {#th, the, he#, #t, th, he, e#} 
"example" ~ {#ex, exa, xam, mpl, ple, le#} 

A given OCR string to be corrected is represented by a vector containing its letter n-grams. 
Using the vector as the query, the lexicon words that are similar to the word error are retrieved, 
giving a large list of candidate correct forms. Candidates must share at least some features with 
the input string (query). A ranked list can be generated by scoring matches using a simple term 
frequency (TF) count-- the number of matches between the query vector and the n-gram vector of 
a candidate word. For example, given the string: 

"exanple" ~ {#exanple#} 
{#ex, exa, xan, anp, npl, ple, le#} 

the word "example" is a candidate: 
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"example" ~ {#example#} 
{#ex, exa, xam, amp, mpl, pie, le#} 

Since the two items share four letter n-grams--"#ex', "exa',  "ple", and "le#'--the TF score of the 
candidate word "example" for the input string "exanple" is four. Note also that the TF score can 
be used to establish a threshold or cutoff score to limit the number of candidates to consider. 

In step 2, the system re-ranks the words in the candidate list using channel probabilities as 
described above. 

On average, the system generates several hundred candidates for a given string. Only the first 
N candidates are retained for context-based word-error correction. 

2.4 The Word Correction System for OCR Post-Processing 

The architecture of the word correction system for OCR post-processing is given in Figure 1. 

I OCR Text l 

Candidate Generation 

='l Candidate Retrieval .... 

Candidate Ranking 

I Lexicon 1 

Character Confusion 1 
Table 

I Word Bigram 
Table 

:Ira 
Maximum Likelihood 

Word Sequence Finding 

Feedback 

I Corrected OCR Text 

Figure 1: System Architecture 

The lexicon is generated from the training text; it includes all the words in the training set 
with frequency greater than the preset threshold. The words in the lexicon are indexed by letter 
n-grams as described in the previous section. 
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The overall process for correcting a sentence is as follows: 

1. Read a sentence from the input OCR text. 

2. Retrieve up to M candidates from the lexicon for each possible errorJ Rerank the M 
candidates by their conditional probabilities to the error. Keep only the top N candidates for 
the next processing step. (In the current system, M is 10,000 and N is 10.) 

3. Use the Viterbi algorithm to get the best word  sequence for the strings in the sentence. 

Figure 2 illustrates the alternative choices and the optimal path found during the processing 
(correcting) of the sentence "john fornd he man". 

Original Sentence: John found the man. 

Input Sentence: john fornd he man. 

Corrected Sentence: John found the man. 

john forned he man 

found'~.._._._.._ . r l a e .~ ,~__ ._ .~ . - - . - ' ~  Joh~___.~___~ ~ ~- . -~man 

join ~ . . . . ~ ~ - ~  fond ~ ~  the~,  ~ - - - ~ - ~  an 
Cohn ~ , ~ , . . ~ N  ford ~ ~ - ' " ~  be ~ - . ~ ~ - " ' - - - . . . ~  may 
K ohn ~ , ~ ~ - ~ a ~  for ~ ~  ~ He ~ . . . ~  can 

~ " ~  The ~ x ~ ~  Jan Sohn  ~ ~ a ,  form , ~  
forms ~ \  ~ ~ ,  mane \\\.q ~ X , ~  ~ , N \ ~  men 

joint ~ N N  ~ food ~ her "~ S a n - ~  
job ~'N~ force she 

formed De Man 
Johns "X~ sound Le van 
Kahn 

Best Word Sequence: John found the man. 

Figure 2: Process of Correcting a Sentence 

The system requires several passes to correct an OCR text. In the first pass, the system has 
no information on the character confusion probabilities, so it will assume a prior belief o~ as the 
probability that a character is correctly recognized. The system distributes the rest of the probability 
uniformly among other events. (Cf. Formula 9.) In each feedback step, the system first generates 
a character confusion probability table by comparing the OCR text to the corrected OCR text from 
the last pass. It uses the new confusion table for the next-pass correction of the OCR text. 

Sin its non-word error mode of operation, the system treats every word that does not match a lexicon entry as a 
possible error. In its non-word and real-word error mode, the system treats every word as though it were a possible 
error. 
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3 Experiments and Results 

To test our OCR-error-correction process, we used a set of electronic documents from the Ziff-Davis 
(ZIFF) news wire? The documents in the corpus are business articles in the domain of computer 
science and computer engineering. We used 90% of the collection for training and the remaining 
10% for testing. 

The system created a lexicon and collected word-bigram sequences and statistics from the 
training data. Words or word-bigrams with frequency less than three were discarded. The 
resulting lexicon contained about 100,000 words; these were indexed using 34,847 letter n-grams. 
The resulting word-bigram table had about 1,000,000 entries. 

Seventy pages of ZIFF data in the test set were printed in 7-point Times font. We degraded 
the print quality of the documents by photocopying them on a "light' setting. The photocopies 
were then scanned by a Fujitsu 3097E scanner and the resulting images were processed by Xerox 
Textbridge OCR software. 

The set of documents contained 55,699 strings and the overall word error rate after OCR 
processing was 22.9% (12,760). For literal words in the source (only letter sequences, not alpha- 
numeric ones), the error rate was lower, 14.7% (8,198). Table I gives the number  of real-word and 
non-word errors for literal words in the OCR data. 

Non-Word Errors 
Number  6,506 

% 79.4 

Real-Word Errors Total Errors 
i,692 8,198 
20.6 100 

Table 1: OCR Errors Originating from Literal Words 

We conducted three experiments: 

1. Isolated-Word Error Correction: The system used only channel probabilities without consid- 
ering context information, i.e., it always selected the candidate with the highest rank in the 
candidates list to correct a given OCR string. 

2. Context-Dependent Non-Word Error Correction: The system used context to correct strings that 
did match valid lexicon words. 

3. Context-Dependent Non- and Real-Word Error Correction: The system treated all input strings 
as possible errors and tried to correct them by taking into account the contexts in which the 
strings appeared. 

In each experiment, the system conducted four correction passes: one initial pass with prior 
probability c~ = 0.99 and three feedback passes. 

Results are given in Tables 2, 3, and 4. In all cases, we considered only those strings whose 
correct forms are literal words (not alpha-numerics). Note that errors can be introduced by the 
system when it incorrectly changes a correct word in the OCR text into another word. In fact, 
we distinguish two types of errors introduced by the system: errors caused by changing correct 

3The ZIFF collection is distr ibuted as part  of the data used in the Text Retrieval Conference (TREC) evaluations. The 
corpus contains about 33 million words. 
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unknown words and errors caused by changing correct lexicon words. The error reduction rate 
was calculated by subtracting total errors from 8,198 and dividing by 8,198. 

The system, running unoptimized code on a 128MHz DECalpha processor, processed the test 
corpus at a rate of about 200 words (strings) per second for experiments 1 and 2; and 30 words 
(strings) per second for experiment 3. 

Pass 
F~st 

Feedback-1 
Feedback-2 
Feedback-3 

Non-Word Errors 
Remain Corrected 

3,049 3,457 
2,816 3,690 
2,791 3,715 
2,784 3,722 

Real-Word Errors 
Remain Corrected 

1,692 0 
1,692 0 
1,692 : 0 
1,692 ! 0 

Introduced Errors 
Unknown Wds Lex Wds 

182 0 
182 0 
182 0 
182 0 

Table 2: Results from Isolated-Word Error Correction 

Total Error 
Errors Reduction (%) 
4923 39.9 
4,690 42.8 
4,665 43.1 
4,658 43.2 

Non-Word Errors ! Real-Word Errors Introduced Errors 
Pass Unknown Wds Lex Wds 
First 182 0 

Feedback-1 182 0 
Feedback-2 
Feedback-3 

Remain Corrected 
2,684 3,822 
1,972 4,354 
1943 4,563 
1948 4,558 

Remain Corrected 
1,692 0 
1,692 0 
1,692 0 
1,692 0 

182 0 
182 0 

Total Error 
Errors Reduction (%) 
4,558 44.4 
3,846 53.1 
3,817 53.4 
3,822 53.4 

Table 3: Results from Context-Dependent Non-Word Error Correction 

Pass 
First 

Feedback-1 
Feedback-2 
Feedback-3 

Non-Word Errors 
Remain Corrected 

2,529 3,977 
1,978 4,528 
1,935 4,571 
1,926 4,580 

Real-Word Errors 
Remain Corrected 

1,225 467 
1,031 661 
1,008 684 
1,015 677 

Introduced Errors Total Error 
Unknown Wds Lex Wds Errors Reduction (%) 

182 54 3,990 51.3 
182 119 3,310 59.6 
182 141 3,266 60.2 
182 , 147 3,270 60.1 

Table 4: Results from Context-Dependent Real- and Non-Word Error Correction 

4 Analysis 

Based on the results, we can see that the predominant,  positive effect in correction occurs in the first 
pass. Performance also improves significantly in the first feedback process, as the system learns 
the character confusion probabilities by correcting the OCR text. The second and third feedback 
steps have only slight effect on the error reduction rates. Indeed, in experiment 3, the result 
from the third feedback pass is actually worse than that from the second feedback pass. These 
results indicate that an initial pass followed by two feedback passes may optimize the method. In 
the following discussion, we compare the three experiments using the results obtained from the 
second feedback step (Feedback-2). 

As we might expect, the results from the context-based experiments are much better than 
those from the isolated-word experiment. The error reduction rates in experiments 2 and 3 are, 
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respectively, 10.3% and 17.1% higher than the rate in experiment 1. This indicates that even a 
modest  (e.g., bigram-based) representation of context is useful in selecting the best candidates for 
word-error correction. 

In all three experiments, the system introduced 182 new errors due to false corrections of words 
that were not in the lexicon. (Recall that the system lexicon is based on the words derived from the 
training corpus; some words may be present in the test corpus that are not in the training corpus.) 
Whenever the system encounters an unknown word,  it treats it as a non-word error and attempts 
to correct it. In such cases, the system replaces the presumed non-word error with a word from its 
lexicon. Thus, for example, if the system encounters the word "MobileData" (a correct name) in 
the OCR output, but does not have "MobileData" in its lexicon, it might change "MobileData" to 
"MobileComm" (a word  that does exist in the training corpus lexicon). Of course, such problems 
in processing unknown words are not unique to OCR error correction; they represent a general 
problem for all natural-language processing tasks. 

As shown by experiment 3, when  the system uses context-based non- and real-word error 
correction, it achieves a total error reduction rate of 60.2%. This is 6.8% higher than the rate 
achieved in the context-based non-word experiment. The improvement in performance is gained 
principally from the reduction of the real-word errors. Although the system introduces additional 
errors--since all the strings in the OCR text are treated as possible errors and subject to change--the 
number  of corrected real-word errors far exceeds the number  of real-word errors introduced. In 
the second feedback pass, for example, the system introduced 141 new errors by changing correct 
lexicon words into other lexicon words. On the other hand, the system properly corrected 684 real 
errors--32.1% of all the real errors. The corrected OCR text, therefore, has 543 fewer real-word 
errors than the original OCR text. 

Certain types of errors in the source or OCR-output text present systematic problems for our 
approach, highlighting the limitations of the system. In particular, because the process is based 
on the structural definition of a word (viz., a character sequence 'between white space')--not a 
morphological one- -any  errors that obscure word boundaries will defy correction. For example, 
run-on errors (e.g., "of the"/"ofthe")  and split-word errors ("training" /" t ra in  ng ' )  cannot be 
corrected. In addition, the use of a vector-space querying to find candidate lexical entr ies--  
including our special approach to word decomposition and scoring--can present problems when 
processing some OCR errors, especially short strings. For example, if "both" (in the source) is 
rendered as "hotn" (in the OCR text), it is not possible for the system to generate "both" as one of 
the high-ranked candidates-- they share only one feature, the bigram "o t " - -  despite the fact that 
the conditional probability pr("hotn"l"both" ) might be high. Finally, the system suffers from the 
common limitation of word  bigram or trigram models in that it cannot capture discourse properties 
of context, such as topic and tense, which are sometimes required to select the correct word. 

5 Conclusion 

The system we have created uses information from a variety of sources--qetter n-grams, charac- 
ter confusion probabilities, and word-bigram probabilities---to realize context-based, automatic, 
word-error correction. It can correct non-word errors as well as real-word errors. The system can 
also learn character confusion probability tables by correcting OCR text and use such information 
to achieve better performance. Overall, for complete (real- and non-word) error correction, it 
achieved a 60.2% rate of error reduction. 
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The techniques we have used are subject to certain systematic problems. However, we believe 
they will prove to be useful not only in improving the quality of OCR processing, but also in 
enhancing a variety of information retrieval applications. 

In future work, we plan to explore different heuristics to deal with word boundary problems 
and to incorporate other models of context representation, including both SLM approaches, such 
as word trigram models, and simple discourse structures. 
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A Example of OCR Correction 

Original Text 

Power-supply IC controls both PWM and power-factor correction. 

Designers are focusing more on power-factor correction when creating integrated circuits, due to 
limited energy supplies, new standards and the type of office electrical loads found in offices. 
Micro Linear Corp's ML4819 makes the designer's job easier by including both 
power-faction-correction and PWM control on one chip. This integrated circuit aids in increasing 
a supply's power factor with fewer components than other implementations. The ML4819 is 
available in 20-pin DIPs for $3.95 for 100 units. Applications for the product include power 
supplies for microcomputers in the 150 to 400W range, computer peripherals, instruments, 
plotters, printers and other off-line power supplies. 

OCR Text: 

tN-wer-supp(y IC conimls both PWM and power-factor correciiiifl. 

t)esigners are focusing more on power-factor correction when creating integrated circuits, due to 
limited energy supplies, new -andards and the type of office electrical loacs found in iffices. 
Micro Linear Corp's ML4819 makes the designer's job easier by including both 
power-faction.correction and PWM control in one chip. This integrated circuit aids in increasing 
a supply's power factor with Thwer components than other implementations. The ML4819 is 
available in 20-pm DIPs for 53.95 for ((1) units. Applications for the product include power 
supplies for microcomputers in the 150 to 41)0W range, computer penpoerals, instirirnents. 
plotters, pnnters and other off-line power supplies. 

Corrected OCR Text from First-Pass Correction: 
Note: the correction for a given string is in brackets. 

tN-wer[Newer] - supp(y[supply] IC conimls[coils] both PWM and power - factor 
correciiiifl[correction]. 

t)esigners[Designers] are focusing more on power - factor correction when creating integrated 
circuits, due to limited energy supplies, new -andards[standards] and the type of office 
electrical[electrical] loacs[loads] found in iffices[offices]. Micro Linear Corp'  s ML4819[XL19] 
makes the designer'  s job easier by including both power - faction[action], correction and PWM 
control in one chip. This integrated circuit aids in increasing a supply'  s power factor with 
Thwer[fewer] components than other implementations. The ML4819[XL19] is available in 20 - 
pm[ppm] DIPs for 53.95 for ( ( 1 ) units. Applications for the product include power supplies for 
microcomputers in the 150 to 41 )0W[NEW] range, computer penpoerals[peripherals]. 
instirirnents[instruments] . plotters, pnnters[punters] and other off - line power supplies. 

00 



Corrected OCR Text from Feedback Correction: 
Note: the correction for a given string is in brackets. 

tN-wer[Power] - supp(y[supply] IC conimls[controls] both PWM and power  - factor 
correciiiifl[correction]. 

t)esigners[Designers] are focusing more on power - factor correction when  creating integrated 
circuits, due to limited energy supplies,  new "andards[Standards] and the type of office 
electrical[electrical] loacs[loads] found in iffices[offices]. Micro Linear Corp '  s ML4819 makes the 
des igner '  s job easier by including both power - faction[factor], correction and PWM control in 
one chip .  This integrated circuit aids in increasing a supp ly '  s power factor with Thwer[Tower] 
components than other implementations .The ML4819 is available in 20 - pm[pin] DIPs for 53.95 
for ( ( 1 ) units .  Applications for the product include power supplies for microcomputers in the 
150 to 41 )0W[ROW] range,  computer penpoerals[peripherals],  instirirnents[instruments] . 
plotters,  pnnters[printers] and other off - line power  supplies.  
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