
A : S E M A N T I C I N T E R P R E T E R F O R
S Y S T E M I C G R A M M A R S

Tim F. O'Donoghue
t immy@uk, ac. leeds, ai

Division of Artificial Intelligence
School of Computer Studies
The University of Leeds
Leeds LS2 9JT. UK

+44 532 33.5430

A B S T R A C T

This paper describes a method for obtaining the
semantic representation for a syntax tree in Sys-
temic Grammar (SG). A prototype implementation
of this method - - the REVELATION1 semantic inter-
preter - - has been ldeveloped. It is derived from
a SG generator foe a large subset of English - -
GENESYS - - and is !thus, in contrast with most re-
versible grammars, fan interpreter based on a gen-
erator. A task decomposition approach is adopted
for this reversal process which operates within the
framework of SG, thus demonstrating that Systemic
Grammars can be reversed and hence that a SG is
a truly bi-directional formalism,

p

Introduct ion

SG (see Butler [4] for a good introduction) is a
useful model of lan~guage, having found many ap-
plications in the areas of stylistics, text analy-
sis, educational linggistics and artificial intelligence.
Some of these applications have been colnputa-
tional, the best known probably being Winograd's
SHRDLU [22]. Howdver, most computational appli-
cations have been designed from a text-generation
viewpoint (such as Davey's PROTEUS [6], Manta
and Matthiessen's NmEL [16, 17] and Fawcett and
rlhtcker's ¢ENESYS [!0]).

Because of this text-generation viewpoint of sys-
ten tic grammarians, the mechanism for sentence
analysis within SG (the reverse of the sentence gen-
eration process) h ~ received much less attention.
This paper describes one stage of the sentence anal-
ysis process: s e m a n t i c i n t e r p r e t a t i o n . l

1 This assumes that Isentence analysis can be decomposed
into t w o p r o c e s s e s : s y n t a c t i c a n a l y s i s (parsing) plus semantic

In Fawcett 's SG, 2 a syntax tree (whose leaves de-
fine a sentence) is generated from a set of semantic
choices. R.EVELATION1 reverses this process: it at-
tempts to find the set of semantic choices needed
to generate a given syntax tree. In sentence gener-
ation, a tree is generated, but only the leaves (the
words) are 'output ' , the rest of the tree is simply
deleted. In tile reverse process, when a sentence is
input, a syntax tree must first be found before it can
be interpreted. REVELATION1 assumes that a sepa-
rate SG parser (not discussed here) is available; for
an example of such a parser see O'Donoghue [20].
Thus REVELATION1 directly mirrors the generator,
while the parser mirrors tlle tree deletion process.

REVELATION1 has been developed within the
PoPI.OG environment, a It is coded in a com-
bination of P o P l l [1] and Prolog [5] and utilizes
GENESYS. GENESYS is a very large SG generator for
English, written in Prolog (Fawcett and Tucker [10])
and it is version PG1.5 that has been used for the de-
velopment and testing of REVELATIONI. GENESYS
and REVELATION are part of a much larger project,
the COMMUNAL 4 Project, the aim of which is
to build a natural language interface to a rich SG
oriented IKBS in tim domain of personnel manage-

interp|~etation. These p r o c e s s e s a r e not necessarily sequential,
although it greatly simplifies things if they are treated as
such. tlere I assume a sequential scheme in which the parsing
process passes a syntax tree to the interpreter.

2Fawcett's Systemic Functional Grammar [8, 9], his devel-
opment of a HMlidayan SG.

3POPLOG is a multi-language development environment
contaiifing incremental compilers for POPII (the base lan-
guage), Prolog, Comnmn Lisp and Standard ML, an inte-
grated editor and numerous support tools [12].

4The COMMUNAL Project at University of ~Vales Col-
lege of Cardiff (UWCC) Computational Linguistics Unit and
Leeds University School of Computer Studies was s p o n s o r e d
by RSRE Malvern, ICL and Longman.

129

w h o

r71

o p e n + i n g

I

|

!

t h e b ig- , I -es l
7

o n e

F r"l

Figure 1: A Typical Pal.5 Syntax Tree

ment.

This is not the first time a semantic interpreter
has been attempted for a large SG: Kasper [13] has
developed a sentence analysis method (both pars-
ing and interpretation together in my terminology)
based on the NIGEL grammar. In his approach the
SG is compiled into a Functional Unification Gram-
mar (FUG) (see Kay [14], a representation language
with some systemic links) and then existing (but ex-
tended) FUG parsing techniques are used to find a
syntax tree plus an interpretation for a sentence.

The REVELATION1 approach differs from this com-
pilation method since the interpretation is achieved
within a systemic framework. No other SG-based
model (to my knowledge) has been used for both
generation and interpretation in this way.

S y s t e m i c G r a m m a r

Fawcett's SG is a meaning-oriented model of lan-
guage in which there is a large 'and/or ' network of
semantic features, defining the choices in meaning
that are available. A syntax tree is generated by
traversing multiple paths (see later) through this
network, making choices in meaning, and so defin-
ing the meaning of the syntax tree to be generated.
These choices fire realization rules which specify tile
structural implication of choosing certain features;
they map the semantic choices onto syntactic struc-
tures and so transform the chosen meaning into a
syntax tree (and hence a sentence) which expresses
that meaning.

As an example of the syntax trees which are gem
erated by Pol.5, consider Figure 1. Systemic syn-
tax trees consist of a number of levels of structure
called units; the tree in Figure 1 has four: one clause
(CI), two nominal groups (ngp) and a quantity-
quality group (qqgp). The components (immedi-
ate constituents) of each unit are elements of struc-

ture labelled to represent the functions fulfilled by
that component with respect to its unit. For exam-
ple: subject (S), main verb (M), second complement
(C2) and ender (E) in the clause, superlative de-
terminer (ds) and head (h) in the nominal groups,
superlative deictic determiner (dds) and apex (a)
in the quantity-quality group. Some items may ex-
pound more than one function in a unit, e.g. "is"
flmctions both as operator (O) and period-marking
auxiliary (Xpd) in the clause and is labelled with
the conflated functional label O / X p d . Some ele-
ments may be conflated with participant roles, e.g.
"who" is a subject playing the role of agent (At)
and so is labelled S /Ag . Similarly "the big+est
one" is a complement playing the role of affected
(Af) and hence is labelled C2 /Af . The immedi-
ate constituent of an element of structure is either a
lexical item (either a word or punctuation, in which
case we say that the item expounds the element, e.g.
the lexical item "one" expounds h), or a further unit
(when we say a unit fills the element, e.g. the unit
qqgp fills ds).

Ilaving introduced the type of syntax tree that is
generated, let us now consider the actual process of
generation. The key concept in SG is that of choice
between small sets of meanings (systems of semantic
features). For example, the NUMBER system contains
tile choices s i n g u l a r and p l u r a l . The choiee sys-
tems in a systemic grammar are linked together by
'and' and 'or' relationships to form a complex sys-
tem network, specifying the preconditions and con-
sequences of choosing features. Consider the sys-
tem network presented in Figure 2 (an excerpt from
eo 1.5 which contains ~450 systems, some contain-
ing many more features than the binary systems il-
lustrated in this example). In the systemic nota-
tion curly braces represent conjunctions and verti-
cal bars represent exclusive disjunctions, i.e. choice.
The upper-case labels are the names of systems and

130

MOOD] information__
[directive

I retrospective05 __.)
•] not-retrospective

kEXPl~CT I expect(15.4)_._
] not-expect k V, TYPI~]

I

pas t-from- expect (15.7)
not-past-from-expect

immediate-expect(15.6)
unmarked-expect (1 S.5)

Figure 2: A fragment of the English 'tense' Network

directive
information,
information,
information,
information,
information,
information,
information,

retros)strive, not-expect ... "touch"
retrol mctive, expect, immediate-expect "has beenahout to touch"
retros ~sctive, expect, unmarked-expect "has heengoing to touch"
n o t - r e t r o s p e c t i v e , expect, immediate-expect, past-from-expect 'qsabout to have touched"
not-retrospective, expect, immediate-expect, not-past-from-expect 'qsahout to touch"
not-retrospective, expect, unmarked-expect, past-from-expect "is going to have touched"
n o t - r e t r o s p e c t i v e , e x p e c t , unmarked-expec t , n o t - p a s t - f r o m - e x p e c t "is go ing to t o u c h '

t

Figure 3: Examples of 'tense' Selection Expressions and their realizations

]

15.5 : unmarked-expect :
G Q 73, G < "going to".

15.6 : immediate-expect :

G @ 73, G < "about to".

15.7 : past-from-expe'ct :

Xpf @ 85, Xpf < "have",

if period-marked then Xpd <+ "en"

else if unmarked-passive then Xp <+ "en".

Figure 4: iRealisation Rules

the lower-case labels are the names of the features in
those systems. Each sjrstem has an entry condition;
a precondition which must be met in order to en-
ter the system and make a choice. For example, to
enter the RETR0 (retrOspectivity) and EXPECT (ex-
pectation) systems, information must have been
chosen. To enter the PFE (past from expectation)
system, both n o t - r e t ~ o s p e c t i v e and expec t must
have been chosen. The :sets of choices in meaning de-
fined by this network fr:agment are listed in Figure 3.
Each set of choices is a s e l e c t i o n e x p r e s s i o n , i.e.
a path (typically bifurcating) through the network.

Associated with certain features are realization
rules. In Figure 2, the bracketted numbers are point-
ers to realization rules;i thus realization rule 15.7 is
triggered by the feature p a s t - f r o m - e x p e c t . A real-
ization rule specifies the structural consequences of

choosing a feature; they map the semantic choices
onto syntactic structures. Often conditions are in-
volved; consider the realization rules shown in Fig-
ure 4 (PG1.5 contains ~500 realization rules, many
of which are far more complex than these examples).
The main types of rule are:

* Components Rules: ElaN, stating that the el-
ement E1 is at place II in the current unit
(thus placing an ordering on the components
of the unit currently being generated). These
place numbers are relative rather than physi-
cal; an element at place S states that the el-
ement (if realized) will appear after elements
whose places are less than N and before those
elements whose places are greater than 1I.

Filling Rules: is_filled_by U, defining the
unit U to be generated, e.g. U=ngp.

. Conflation Rules: F2 by F1, stating that the
two functions F1 and F2 are conflated with
one another in the current unit (e.g. a Sub-
ject which also functions as an Agent).

. Exponence Rules: El<Word, stating that the
element El is expounded by an item (e.g.
N<"open"), i.e. exponents creates terminal
constituents.

• Re-entry Rules: for F re_enter_at f, stat-
ing that the function F is filled by a unit which
is generated by re-entering the network a t t h e
feature :t.

• Preference Rules: f o r F p r e f e r I f . . .] ,

131

Selection Expressio~ ~
for CI filling Z / t ! I

, ' , [Subtaskial [Subtasklb]
Selection Expression~ [Selection Expressio d
for ngp filling S | I for ngp filling C2 | AND-node AND-node OPv-node OR-node

I

Selection Expressio~
for qqgp filling as | Figure 6: AO Tree Primitives

Figure 5: A Pro to type Semantic Representation

stat ing that when re-entering to generate a
unit to fill the function F, the features [: f . . .]
should be preferred, either absolutely (i.e.
'pre-selection') or tentat ively (expressed as a
percentage).

A sentence is generated by generating the syntax
tree for the sentence, the leaves in this tree being
the words of the sentence. The tree is generated by
generating each of its units in a top-down fashion.
Each unit is generated by a single pass through the
system network. This pass is expressed as a selec-
tion expression which lists the features chosen on
that pass. For example, suppose we wanted to gen-
erate the sentence "the prisoner was going to have
been killed". The selection expression for the clause
would contain the features (plus many others, of
course):

information, not-retrospective, expect,
unmarked-expect, past-from-expect.

Any realization rules associated with features in the
selection expression are then executed. Rules 15.5
and 15.7 in Figure 4 generate a structure whose
leaves are " . . . going to . . . have . . . (be)en . . . " . For
example, to generate the clause structure in Fig-
ure 1, the following realization s ta tements were ex-
ecuted:

is_filled_by C1
S@35, 0@37, M@94, C2@I06, E@200
hg by S, Xpdby 0, Af by C2
O<"is", N<"open", M<+"+ing", E<"?"
for Ag re_enter_at stereotypical_thing
for Af re_enter_at thing

The re-entry realization s ta tements show which
functions are to be filled by re-entering the system
network to generate further units. Re-entry can be
thought of as a recursive function call which gener-
ates a lower layer of structure in the tree - - but
typically with some of the choices 'preferred' via
the preference realization s ta tement . Thus the syn-
tax tree in Figure 1 is generated with four passes:

the clause is generated first, followed by the nomi-
nal group filling the subject agent, followed by the
nominal group filling the affected complement , and
finally the quanti ty-quali ty group filling the superla-
tive determiner.

The information required to generate a syntax
tree can be expressed as a tree of selection expres-
sions; this is the s e m a n t i c r e p r e s e n t a t i o n for the
sentence. Each node in t h e semantic representa-
tion corresponds to a unit in the syntax tree and
is labelled by the selection expression for tha t unit.
For example, a semantic representation of the form
shown in Figure 5 is needed to generate the syntax
tree in Figure 1.

I n t e r p r e t i n g a S y n t a x T r e e

Given a syntax tree, the aim of interpretat ion is to
find the semantic representation which would gener-
ate that tree. This semantic representation includes
all the features that are needed to generate the tree
and so defines the 'meaning content ' of the syntax
tree.

In the process of generation, a syntax tree is gen-
erated by generating its units; in the process of in-
terpretat ion a syntax tree is understood by inter-
preting all of its units in a precisely analogous way.
Thus a unit interpretat ion is the selection expres-
sion which generated tha t unit. In general there can
be more than one selection expression for any given
unit, since the same syntactic s tructure can have
more than one meaning, just as a whole sentence
can have more than one meaning. The potential
unit interpretations are defined by constructing an
AO tree ~ whose goal (root) is to prove unit realiza-
tion, i.e. prove tha t the unit can be generated. Each
potential solution of this AO tree defines a poten-

5 AO (AND/OR) trees provide a means for describing task
decomposition. These structures were first proposed by Sla-
gle [21] and have since been used in a variety of applications
including symbolic integration and theorem proving (Nilsson
[18] lists a number of applications with references). The AO
tree notation used throughout this paper is illustrated in Fig-
ure 6 with leaves - - terminal tasks which cannot be decom-
posed any further - - being represented as bold nodes.

132

I
Realisation of
Descriptor 1

Unit Interpret, atio d
I

I Unit ea|isationl

[Realis'ation of Realisation of [
Descriptor i [I Descriptor n I

Figure 7: Decomposition of Unit Interpretation

tial selection expression for the unit. The semantic
representation for the tree is given by some feasible
combination of the :potential selection expressions
for each unit in the: syntax tree. Not all combina-
tions of selection expressions are feasible since the
generation passes, alnd hence the selection expres-

i

sions, are interdepelident. Thus:

• A pass is dependent upon previous, higher
passes througl~ the use of the unary boolean
operators on_.p~ev_pass and o n _ f i r s t _ p a s s in
conditions inside realization rules. These op-
erators are usdd to test the values of features
in passes for ~igher units in the syntax tree.
For example !the condition on..:first_l~ass
written is only true if uritten is selected on
the first pass.

• Subsequent passes are dependent upon the
pre-sclections that are made with the pref-
erence rules. For example, when gen-
erating a que:stion (such as that in Fig-
ure I) it is n#cessary to pre-select the fea-
ture seeking-'specification-of-thing for
the nominal group which fills the subject
agent. This t ensures that a Wh-subject is gen-
erated.

Decomposing Unit Interpretation

The first step in unit interpretation is the de-
composition of the :unit's structure into a set of
descriptors; 6 each describing a different aspect of
the unit 's structure. For example, the descriptors
required to describe the clause in Figure 1 are:

un i t (c1)
e l (1 , s) , e l (2 , 0) , el(3,M), e1(4,C2), e l (5 ,E)
conf(S,Ag), conf(O,Xpd), conf(C2,Af)
stem(O, "is"), .stem(M,"open"), stem(E, "?")
suff ix (M, "+ing")

6A descriptor is simply an abstract description of a real-
ization; it attempts to ~apture the effect of the realization
statements without using any of their syntax.

re_enter(S,Ag), re_enter(C2,Af)

Tile u n i t descriptor specifies the name of the cur-
rent unit, the e l descriptor specifies the order-
ing of the component elements, the ¢on:f descrip-
tor specifies the conflation relationships, the stem
and s u f f i x descriptors specify the items expound-
ing lexical elements, and the r e _ e n t e r descriptor
specifies the non-terminal elements requiring a sub-
sequent pass to generate a unit to fill them.

D e c o m p o s i t i o n 1 [Unit Interpretation] Unit in-
terpretation is achieved by proving that the unit can
be realized. To do this, the unit 's structure is de-
scribed, using a set of descriptors, and hence unit
realization is decomposed into a number of separate
realizations, with one realization for each descriptor.
Thus unit interpretation is achieved by realizing all
descriptors (hence realizing the whole unit). This
decomposition is illustrated in Figure 7.

Each descriptor is realized by some realization
s tatement (which will appear somewhere in the re-
alization rules). There is a simple mapping between
descriptors and suitable realization statements. For
some descriptors there is only a single suitable re-
alization statement: for example, u n i t (U) is only
realized by the s ta tement is_filled_by O. Other
descriptors can be realized by a number of differ-
ent realization statements: for example, e l (i , E l i)
is realized by statements of the form EliQN, where
the place N is greater than the places for El i_ i and
less than the places for El i+l . This ensures correct
ordering of the constituent elements.

For each descriptor, a search of the realization
ruh,s is performed to find any s ta tements which re-
alize the descriptor. For example, for the descrip-
tor u n i t (e l) we would search for all occurrences
of i s _ f i l l e d . b y Cl in the realization rules. After
the search is complete there will be a set of poten-
tially active rules for each descriptor, with each po-
tentially active rule containing a suitable s ta tement
(or possibly more than one suitable s ta tement) that

133

Descriptor Realisation]
I

[Suitable Statementsl
' I ' I I J I t. I I r 3

IOccurrencel I IOccurrencei l IOccurrencen]
'] '

f--- --J" ---- "I f- -- --L -- -- -I

, , I I , ,

I ule ctivatioo I I O.e P,eco.ditioo holds I
I l I

[Precond 1 = T] I P r e c o - ~ m = W I

Figure 8: Decomposition of Descriptor Realisation

would realize the descriptor. Associated with each
potentially active rule is a set of preconditions, one
precondition for each suitable statement. (If the
s ta tement has no precondition, then the set of pre-
conditions will be empty.)

D e c o m p o s i t i o n 2 [Descriptor Realization] Prov-
ing that a descriptor can be realized is decomposed
into (i) activating any one of its potentially active
rules, and (ii) proving that any one of the precondi-
tions associated with that rule holds true (assuming
there are any preconditions). This decomposition is
illustrated in Figure 8.

What is required for a rule to be active? A rule
can only be active if there is a feasible path (feasi-
ble in the sense that all features on that path can
be selected) through the system network to a fea-
ture associated with that rule. There will be at
least one potential path to each rule; 'a t least' is
required since a rule can have more than one poten-
tim path if (i) it is associated with more than one
feature or (ii) it is dependent upon a disjunctive en-
try condition. Thus the potential paths to a rule
can be represented as a boolean expression; i.e. as
an exclusive disjunction of conjunctions:

pathl xor path2 xor ... xor pathN

where the p a t h components are conjunctions com-
posed from the features in each potential path and
the exclusive disjunction represents choice between
potential paths. This expression can be simplified
into an expression of the form:

common and
(v a r i a n t l xo r . . . xor v a r i a n t N)

where common is a conjunction of features that
is common to all potential paths and v a r i a n t l

• . . variantN are the conjunctions of features pecu-
liar to each potential path• This expression can be
considered as a precondition for rule activation and
so must be true for the rule to be active.

D e c o m p o s i t i o n 3 [Rule Activation] Rule Activa-
tion is achieved by activating one of the potential
paths to that rule. The potential paths can be de-
composed into a common component and a number
of variant components. One potential path is active
if and only if the common component is active and
its variant component is also active. This decompo-
sition is illustrated in Figure 9.

At this stage in the decomposition all tip nodes
are problems of the form 'boolean expression = T ' ,
i.e. satisfiability problems. In order to define how
satisfiability problems are solved, the concept of a
t ruth function must first be introduced. A truth
function is a mapping between features and a three
valued logic (with truth values false, true and unde-
fined) which defines the value of each feature; true
indicating selected and false indicating not selected•
Tile problem of satisfiability for a boolean expres-
sion involves finding a t ruth function such that the
boolean expression evaluates ? to be true, such a
truth function is called a satisfying t ruth function
for tile boolean expression. Unfortunately, this is
all intractable problem since a disjunction with n
disjuncts can have 3 " - 1 potential satisfying t ruth
functions, i.e. the task is exponential in problem size
(in fact, the problem of satisfiability has the honor
of being the first NP-Complete problem; see Garey
and Johnson [11]). As is the case with inherently in-
tractable problems; it is not worth searching for an
efficient, exact algorithm to perform the task; it is

7Evaluation is performed with respect to Kleene's three
valued logic [15].

134

, I
I O o ~ o n Path is Active I

' I
1 ° ° ~ ° n °°rid-- ~1

Rule Activation [

I
[Path Activation [

I
I

[One Variant is Active [
I '0 I

I v~ian~ ~ is Active I I Variant n i. Aot've I
I I

I 0 o n d i = • I I~ond n = • I

Figure 9: Decomposition of Rule Activation

Interpret e l l
I

I Re~|i'e [CI' ' ' '] I
!

.

r - [

,!

I ' Only O~currence

- 7

[~on.ru;ot.~. I

I
!

[P nditions[

I oo, o°o~ked--,q

I I I
[First Occu]

!
[Rule2.04]

' I ~
I ~.°°t-p,-.-~ I I

I
I I

I s d O * ' " I
| I I

[Rule 6-21 I
I

Figure 10: Part of the AO Tree for Clause Interpretation

more appropriate to:consider a less ambitious prob-
lem. Consider the problem of partial satisfiability: it
is essentially the salfie as satisfiability except that it
does not a t tempt to satisfy disjunctive components
(since it is these components which make the satis-
fiability problem 'hard') . It requires a redefinition
of a t ruth function: i n partial satisfiability a t ruth
function is a mappin~g between boolean expressions
(rather than simply features) and truth values. For
example, the expres§ion (a o r b) and ¢ and no t
d is partially satisfied by the fimction v:

v : v(a o r b) = T , v (c) = T , v (d) = F

Since disjunctions are effectively ignored, there is
a single unique partially satisfying truth function
for any boolean expression. Thus tip nodes labelled
with satisfiability problems are (partially) decom-
posed into a numbei, of and-nodes; each and-node
being labelled by a feature (possibly negated) or a

disjunction which must be true. As an example of
a fldly decomposed AO tree for unit interpretation,
consider the skeleton tree in Figure 10 which de-
fines the potential interpretations of the clause in
Figure 1.

A potential solution of an AO tree is specified by
a subset of the leaves that are necessary for the root
task to be achieved. A backtracking search is used
to generate potential solutions: since the AO tree is
finite, it is possible to inspect the structure of the
tree and order the search in such a way so that the
minimum amount of backtracking is performed, s A
feasible interpretation for a unit is one of the po-
tential solutions in which the s tatements labelling
the leaves are all consistent. There are two ways in
which a leaf s ta tement may be inconsistent:

s The search scheme involves incrementally evaluating and
pruning the AO tree. Full details can be found in O'Donoghue
[19], an in-depth report on the interpreter.

135

Selection Expression for CI filling Z

I s i t t t a t ion , congru.entt-si t , in . f?rrnat lon, seeker , n o . c o r ~ - m o d M i t y , I p e r l o o - r n a r k e a j a l n g [e - o u ~ l (l e r - s t h , m a t s r i 3 | , two-role .process , I
a g e n t - c ~ n t r e (l . t r p , plUS-Sllecte~, ~ t l~en t .~ - th~me-mat . aou[h t , I
oVert.~ffected:a.U, ogerl.~Hected.s~l.pr,~sentecl~ qver t¢ affe~Yed, af- u nt he rna t i s ed , l
c~nglng-colanguj r&t ion&J-s t a t e, c nang tng - posi t Lone&J- con f igura t ion , l
cnanglng . s ta te -o l .openness , tm &k e. o p t n ,~.ge nt. ;5- t h e rne- a.f" J

Selection Expression f(~r ngp fillings Selection Expllession for ng p filling C2
I s ' I t h i n k . r g c n t - t h i n . ~ s t e r e o t y p i ~ . l - t h i n g , [' t h i n g K , . t ~a ing~s t e r eo typ i c&l - t , i , g , '

I l l putsrdex, s'~ekto,g-spec'~fi~&tmn-Ol-thtng, outslcter, cffltur~l-c|~s~stPc~.ttpn-recov~r&.vLe, • I
nurn&n| ty . spec |neo . ss t , h u m a n - s s t , peTson-sat c o u n t l s n . c c r , s e l ec t eo - l rom.Dy- supe r l~ t l v | z&t | on I

!

Sclection expression for qqgp filling ds

[qpa l i t y , q u a l i t y : o f . t h i n g , presentinK-qu~l. l l ty.?f-[.hi~g, I olmerlSlOrl-quall ty, SIZe, big, no t .po~en t t a l ly -oen&vloura l -qu&l i ty .
I

Figure 11: A Semantic Representation found by REVELATION I

• The s ta tements logically contradict, for exam-
ple: leaves labelled a = T and a = F. Or
b o r e = T a n d b = F , e = F .

• The s ta tements systemically contradict, for
example: a = T and b = T when a and b
are members of the same choice system (from
which at most one feature can be chosen).

The leaf s tatements in a feasible solution define
which features must be true (i.e. selected) for the
unit to be realized, i.e. they specify a selection ex-
pression for the unit.

R e s u l t s a n d D i s c u s s i o n

The semantic representation found by REVELATION 1
for the syntax tree in Figure 1 is presented in Fig-
ure 11. We can get a flavor of the semantic repre-
sentation by identifying key features: the sentence
is a question (information, seeker) about an on-
going event (pe r iod -marked) which involves open-
ing something (make-open). It is a person that we
are seeking (p e r s o n - s s t) . The thing that is being
opened is selected by superlativization (in fact it is
the biggest) and it is recoverable from the previous
discourse (the "one" referring to something that has
previously been mentioned).

Unfortunately this semantic representation is in-
complete. One of the factors contributing to this in-
completeness is that of 'unrealized' selections: these
are features which have no associated realization
(e.g. not-expect in Figure 2). Consider tile way
in which interpretat ion works: it tries to prove that
observed realizations have taken place and in so do-
ing infer the features that were selected. However,
if a realization does not take place as a (not nec-
essarily direct) result of a selection, then there is
no way to infer that the unrealized feature was se-

lected. Consider the POLARITY system where there
is a choice between p o s i t i v e and n e g a t i v e . The
p o s i t i v e choice is unrealized where as n e g a t i v e is
associated with the realization rule:

17:negative:
do_support,
0 <+ "n't".

Suppose we have a positive clause, "Who is opening
the biggest one?" (the example sentence from Fig-
ure 1). There is no way to tell from the structure of
the clause that the sentence is positive. However
by inspecting the realization rule associated with
negative we find that the (unconditional) state-
ment 0 < + " n ' t " can never be active as this would
realize the sentence "Who isn't opening the biggest
one?". Thus rule 17 can never be active and so
n e g a t i v e can' t be chosen, hence p o s i t i v e must be
chosen. Thus by a process of eliminating features
which cannot be true, it is possible to determine
unrealized features. REVELATION2 (currently under
development) will a t t empt to implement this pro-
cess of elimination by moving forward through the
system network (after a partial semantic represen-
tation has been obtained) systematically verifying
any realization rules that it meets, eliminating fea-
tures that cannot be chosen and so possibly inferring
something about unrealized features which need to
be chosen.

The other factor contributing to incompleteness
is the definition of partial satisfiability. Some fea-
tures in the network do not have realization rules
at tached to them: typically these appear as condi-
tions on s tatements in realization rules. However,
if any of these features appear in disjunctive con-
ditions or disjunctive entry conditions to systems,
then nothing can be inferred about their values since
the definition of partial satisfiability ignores all dis-

136

junctions. This problem can only be overcome by
searching for (exact) satisfying t ru th functions from
which all feature values can be inferred. REVELA-
TION2 at tempts to solve this problem by deferring
the search for exact satisfying t ruth functions un-
til after a partial in,terpretation has been obtained:
the partial interpretation is obtained as for REVE-
LATION1, and then any disjunctions that have been
ignored while obtaining this interpretation are ex-
actly satisfied to try and fill the gaps in the partial
interpretation.

In addition to the work on the next generation of
interpreter, some work is being carried out on P(~ 1.5
to make it more efficient; it is being tuned for inter-
pretation by simplifying and normalizing conditions
in the realization rules. This involves ' t ightening up'
the conditions by su~bstituting xor for o r wherever
possible and reducin'g the scope of any valid disjunc-
tions that remain (eig. a and (b or c) rather than
a and b or a and c).

Clearly efficiency is a problem, since the AO trees
explode into or-nod:es, through the use of (i) dis-
junctive entry conditions in the system network and
(ii) disjunctive conditions in the realization rules. It

[

has been proved (Brew [3]) that systemic classifica-
tion is NP-Hard and is thus inherently intractable.
This led to the choice of partial satisfiabillty rather
than exact satisfiablility (which itself is NP-Ilard)
in REVELATIONI, and the development of an effi-
cient technique for isearching the AO trees which
utilizes incremental ievaluation and pruning to re-
duce the number of backtracking points (full details
in O'Donoghue [19])i The delayed use of exact satis-
fiability being inves!igated in REVELATION2 is sim-
ilar to Brew's 'partial ' algorithm for checking sys-
temic descriptions. IBrew's checking algorithm has
two stages, the first i being a simplification stage in
which all disjunctive:entry conditions are eliminated
from the system netivork by replacing them with a
uniquely generated feature. The resultant simplified
network can then be searched efficiently. The second
stage involves checking all of the features generated
in the first stage, each generated feature referring to
a disjunctive entry c~ondition. IIere also we find a
delaying tactic in which disjunctions are satisfied as
late as possible in the search.

Although no theoretical calculations as to the
complexity of the REVELATION1 method and Pc, l.5
have been nndertaken, we can get a feel for the scale
of the problem by considering the amount of CPU
time that was needed to obtain the semantic repre-
sentation of Figure 1!1. On a SPARCstation 1 with
16M this task required ,~25 CPU seconds, with this

time being halved on a Sun 4/490 with 32M. When
reading these timings bear in mind that REVELA-

TION1 is coded in POPLOG languages which are in-
crementally compiled into an interpreted virtual ma-
chine code.

Conclusions

REVELATION1 has demonstrated that Fawcett 's SG
is a bi-directional formalism, although in the case
of PG 1.5, some reorganization was required to make
it run ill reverse. The main problem in reversing a
SG seems to be that systemic grammars are written
from a predominantly text-generation viewpoint. In
developing their grammars systemic grammarians
are concerned with how the grammar will generate
rather than its suitability for interpretation. For
instance, special care ought to be taken when ex-
pressing conditions in realization rules: writing a
xor b rather than a o r b can be a godsend to an
interpreter. Similarly, simplifying and normalizing
conditions so that they are as simple and specific as
possible is a great aid to interpretation. It reduces
the search space and hence speeds up interpretation
- - even though, from a generative point of view, it
may make more sense to express a condition in a
'long winded' fashion that captures the generaliza-
tion the linguist is a t tempting to make.

Fawcett states (private communication) that in
developing his version of SG (which is different in
a number of ways - - especially in the realization
component - - from the NIGEL grammar of Mann
and Matthiessen) he always had in mind its poten-
tial for reversibility. Perhaps the surprising thing
is not that modifications in GENESYS are indicated
by work on REVELATION, but how few modifications
appear to be required. Clearly, the need now is for
close collaboration between the builders of the suc-
cessor versions of GENESYS and and the successor
versions of REVELATION. Current research has pre-
cisely this goal; and we shall report the results in
due course.

REVELATION1 combined with Fawcett 's SG ap-
pears to be a step in the right direction towards
a hi-directional systemic grammar. REVELATION2
may take a step closer. But a bi-directional systemic
grammar will only be achieved when interpretation-
minded people and generation-minded people get to-
gether and collaborate in developing such a gram-
mar.

137

A c k n o w l e d g e m e n t s

I would like to thank Eric Atwell and Clive Souter
(Leeds University) for their valuable contributions
to earlier drafts of this paper and Robin Fawcett
(UWCC) for his comments and suggestions on the
final version.

R e f e r e n c e s

[1] Rosalind Barrett, Allan Ramsay, and Aaron
Sloman. POPII: a Practical Language for Ar-
tificial Intelligence. Ellis tlorwood, Chichester,
1985.

[2] James D. Benson and William S. Greaves, ed-
itors. Systemic Perspectives on Discourse: se-
lected papers from the 9th International Sys-
temic Workshop. Ablex, London, 1985.

[3] Chris Brew. "Partial Descriptions and Systemic
Grammar". In Proceedings of the 13th Interna-
tional Conference on Computational Linguis-
tics (COLING '90), 1990.

[4] Christopher S. Butler. Systemic Linguistics:
Theory and Applications. Batsford, London,
1985.

[5] William F. Clocksin and Chris S. Mellish. Pro-
gramming in Prolog. Springer Verlag, 3rd edi-
tion, 1987.

[6] Anthony Davey. Discourse Production: A
Computer Model of Some Aspects of a Speaker.
Edinburgh University Press, 1978.

[7] David R. Dowty, Lauri Karttunen, and
Arnold M. Zwicky, editors. Natural Language
Parsing: psychological, computational and the-
oretical perspectives. Studies in Natural Lan-
guage Processing. Cambridge University Press,
1985.

[8] Robin P. Fawcett. Cognitive Linguistics and
Social Interaction, volume 5 of Exeter Linguis-
tic Studies. Julius Groos Verlag, Heidlberg,
1980.

[9] Robin P. Fawcett. "Language Generation as
Choice in Social Interaction". In Zock and
Subah [24], chapter 2, pages 27-49.

[10] Robin P. Fawcett and Gordon H. Tucker.
"Demonstration of GENESYS: a very large se-
mantically based Systemic Functional Gram-
mar". In Proceedings of the 13th Interna-
tional Conference on Computational Linguis-
tics (COLING '90), 1990.

[11] Michael R. Garey and David S. Johnson. Com-
puters and Intractability: A Guide to the The-

ory of NP-Completeness. Freeman, San Fran-
cisco, 1979.

[12] John Gibson. "AI Programming Environments
and the POPLOG System". In Yazdani [23],
chapter 2, pages 35-47.

[13] Robert T. Kasper. "An Experimental Parser
for Systemic Grammars". In Proceedings of
the lgth International Conference on Computa-
tional Linguistics (COLING '88), August 1988.
Also available as USC/Information Sciences In-
stitute Reprint RS-88-212.

[14] Martin Kay. "Parsing in Functional Unification
Grammnar". In Dowty et al. [7], chapter 7, pages
251-278.

[15] Stephen C. Kleene. Introduction to Metamath.
ematics. North-Holland, 1952.

[16] William C. Mann and Christian M. I. M.
Matthiessen. "NIGEL: A Systemic Grammar
for Text Generation". In Benson and Greaves
[2]. Also available as USC/Information Sciences
Institute Reprint RS-83-105.

[17] Christian M. I. M. Matthiessen and John A.
Bateman. Text Generation and Systemic-
Functional Linguistics: experiences from En-
glish and Japanese. Pinter, London, 1991. (in
press).

[18] Ntis Nilsson. Principles of Artificial Intelli-
gence. Springer Verlag, 1983.

[19] Tim F. O'Donoghue. "The REVELATION1 Se-
mantic Interpreter". COMMUNAL Report 22,
School of Computer Studies, University of
Leeds, 1991.

[20] Tim F. O'Donoghue. "The Vertical Strip
Parser: a lazy approach to parsing". Report
91.15, School of Computer Studies, University
of Leeds, 1991.

[21] J. R. Slagle. "A Heuristic Program that Solves
Symbolic Integration Problems in Freshman
Calculus". In E. Feigenbaum and J. Feldman,
editors, Computers and Thought, pages 191-
203. McGraw=Hill, New York, 1963.

[22] Terry Winograd. Language as a Cognitive Pro-
cess, Volume I: Syntax. Addison Wesley, 1983.

[23] Masoud Yazdani, editor. Artificial h~telligence:
principles and applications. Chapman Hall,
1986.

[24] Michael Zock and Gerard Subah, editors. Ad-
vances in Natural Language Generation (Vol-
ume 2). Pinter, London, 1988.

138

