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Abstract

Memory-augmented neural networks
(MANNs) have been shown to outper-
form other recurrent neural network
architectures on a series of artificial
sequence learning tasks, yet they have
had limited application to real-world
tasks. We evaluate direct application
of Neural Turing Machines (NTM) and
Differentiable Neural Computers (DNC)
to machine translation. We further propose
and evaluate two models which extend the
attentional encoder-decoder with capabili-
ties inspired by memory augmented neural
networks. We evaluate our proposed
models on IWSLT Vietnamese→English
and ACL Romanian→English datasets.
Our proposed models and the memory
augmented neural networks perform sim-
ilarly to the attentional encoder-decoder
on the Vietnamese→English translation
task while have a 0.3-1.9 lower BLEU
score for the Romanian→English task.
Interestingly, our analysis shows that
despite being equipped with additional
flexibility and being randomly initialized
memory augmented neural networks
learn an algorithm for machine transla-
tion almost identical to the attentional
encoder-decoder.

1 Introduction

Memory-Augmented Neural Networks (MANN)
are a new class of recurrent neural network (RNN)

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

that separate computation from memory. The
key distinction between MANNs and other RNNs
such as Long Short-Term Memory cells (LSTM)
(Hochreiter and Schmidhuber, 1997) is the exis-
tence of an external memory unit. A controller net-
work in the MANN receives input, interacts with
the external memory unit via read and write heads
and produces output. MANNs have been shown to
learn faster and generalize better than LSTMs on a
range of artificial sequential learning tasks (Graves
et al., 2014; Graves et al., 2016; Sukhbaatar et
al., 2015). Despite their success on artificial tasks,
LSTM based models remain the preferred choice
for many commercially important sequence learn-
ing tasks such as handwriting recognition (Graves
et al., 2009), machine translation (Wu et al., 2016)
and speech recognition (Graves and Jaitly, 2014).

Attentional encoder-decoders (Bahdanau et al.,
2014; Luong et al., 2015), where the encoder and
decoder are often LSTMs or other gated RNNs
such as the Gated Recurrent Unit (Cho et al.,
2014b), are a class of neural network models
that have achieved state-of-the-art performance on
many language pairs for machine translation (Lu-
ong and Manning, 2015; Sennrich et al., 2016a).
An encoder RNN reads the source sentence one to-
ken at a time. The encoder both maintains an inter-
nal vector representing the full source sentence and
it encodes each token in the source sentence into a
vector often assumed to represent the meaning of
that token in its surrounding context. The decoder
receives the internal vector from the encoder and
can read from the encoded source sentence when
producing the target sentence.

Attentional encoder-decoders can be seen as a
basic form of MANN. The collection of vectors
representing the encoded source sentence can be
viewed as external memory which is written to
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by the encoder and read from by the decoder.
But attentional encoder-decoders do not have the
same range of capabilities as MANNs such as
the Neural Turing Machine (NTM) (Graves et al.,
2014) or Differentiable Neural Computer (DNC)
(Graves et al., 2016). The encoder RNN in at-
tentional encoder-decoders must write a vector at
each timestep and this write must be to a single
memory location. The encoder is not able to up-
date previously written vectors and has only one
write head. The decoder has read only access to the
encoded source sentence and typically just a sin-
gle read head. Widely used attention mechanisms
(Bahdanau et al., 2014; Luong et al., 2015) do not
have the ability to iterate through the source sen-
tence from a previously attended location. All of
these capabilities are present in NTMs and DNCs.

In this paper we propose two extensions to the
attentional encoder-decoder which add several ca-
pabilities present in other MANNs. We are also
the first that we are aware of to evaluate the per-
formance of MANNs applied directly to machine
translation.

2 Background

We briefly review how attention weights are com-
puted for Luong attention (Luong et al., 2015) and
how addresses are computed for the NTM. Alter-
native attention mechanisms have similar compu-
tations (Bahdanau et al., 2014) and likewise for
alternative MANNs such as DNCs (Graves et al.,
2016).

2.1 Luong Attention

At each timestep t during the decoding of an at-
tentional encoder-decoder a weighting wt over
the encoded source sentence is computed, where∑

swt(s) = 1 and ∀s wt(s) ≥ 0. The predicted
token at that timestep during decoding is then a
function of the decoder RNN hidden state ht and
the weighted sum of the encoder hidden states i.e.∑

swt(s) ∗ ĥs.
The difference between various attention mech-

anisms is how to compute the weighting wt. In
Luong attention (Luong et al., 2015) the weighting
is computed as the softmax over scaled scores for
each source sentence token, eq. 2. The scores for
each source sentence token are computed as the dot
product of decoder RNN hidden state ht and en-
coder RNN hidden state ĥs which is first linearly
transformed by a matrix Wa.

score(ht, ĥs)← h>t Waĥs (1)

wt(s)←
exp(βt ∗ score(ht, ĥs))∑
s′ exp(βt ∗ score(ht, ĥs′))

(2)

2.2 NTM Addressing
Rather than computing weightings over an en-
coded source sentence, NTMs have a fixed sized
external memory unit which is a N ∗W memory
matrix. N represents the number of memory loca-
tions and W the dimension of each memory cell.
A controller neural network has read and write
heads into the memory matrix. Addresses for read
and write heads in a NTM are computed some-
what similarly to attention mechanisms. However
in addition to being able to address memory us-
ing the similarity between a lookup key and mem-
ory contents, so called content based addressing,
NTMs also have the ability to iterate from cur-
rent or past addresses. This enables NTMs to
learn a broader class of algorithms than attentional
encoder-decoders (Graves et al., 2014; Graves et
al., 2016).

At each timestep (t), for each read and write
head the controller network outputs a set of param-
eters; a lookup key kt, a scaling factor βt ≥ 0, an
interpolation gate gt ∈ [0, 1], a shift kernel st (s.t.∑

k st(k) = 1 and ∀k st(k) ≥ 0) and a sharpening
parameter γt ≥ 1 which are used to compute the
weighting wt over the N memory locations in the
memory matrix Mt as follows:

wct (i)←
exp(βt ∗K[kt,Mt(i)])∑N−1
j=0 exp(βt ∗K[kt,Mt(j)])

(3)

We can see that wc
t is computed similarly to Lu-

ong attention and allows for content based address-
ing. kt represents a lookup key into memory and
K is some similarity measure such as cosine simi-
larity:

K[u,v] =
u · v
‖u‖ · ‖v‖ (4)

NTMs enable iteration from current or previ-
ously computed memory weights as follows:

wg
t ← gtw

c
t + (1− gt)wt−1 (5)

w̃t(i)←
N−1∑

j=0

wgt (j)st(i− j) (6)
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wt(i)←
w̃t(i)

γt

∑N−1
j=0 w̃t(j)γt

(7)

where (5) enables the network to choose whether
to use the current content based weights or the pre-
vious weight vector, (6) enables iteration through
memory by convolving the current weighting by a
1-D convolutional shift kernel and (7) corrects for
any blurring occurring as a result of the convolu-
tion operation.

The vector rt read by a particular read head at
timestep t is computed as a weighted sum over
memory locations similarly to Luong attention:

rt ←
N−1∑

i=0

wt(i) ∗Mt(i) (8)

An attentional encoder-decoder has no write
mechanism. Another way to view this, is that
an attentional encoder-decoder has a memory ma-
trix with N equal to the source sentence length
and the encoder must always write its hidden state
to the memory location corresponding to its posi-
tion in the source sentence. A NTM does have a
write operation, with write addresses determining
a weighting over memory locations for the write.
Each write head modifies the memory matrix by
outputting erase (et) and add (at) vectors which
are then used to softly zero out existing memory
contents and write new memory contents through
addition:

M̃t(i)←Mt−1(i)[1− wt(i)et] (9)

Mt(i)← M̃t(i) + wt(i)at (10)

3 Proposed Models

We propose two models which bridge the
gap between the attentional encoder-decoder
and MANNs, extending the attentional encoder-
decoder with additional mechanisms inspired by
MANNs. We also propose the application of
MANNs directly to machine translation.

3.1 Neural Turing Machine Style Attention
The reads from a decoder in an attentional
encoder-decoder for machine translation often ex-
hibit monotonic iteration through the encoded
source sentence (Bahdanau et al., 2014; Raffel et
al., 2017). However widely used attention mech-
anisms have no way to explicitly encode such a

strategy. NTMs combine content based address-
ing similar to attention mechanisms with the abil-
ity to iterate through memory. We propose a new
attention mechanism which combines the content
based addressing of Luong attention (Luong et al.,
2015) with the ability to iterate through memory
from NTMs. For our proposed attention mech-
anism at each timestep (t) the decoder outputs a
set of parameters for each of its read heads: ht,
βt ≥ 0, gt ∈ [0, 1], st (s.t.

∑
k st(k) = 1 and

∀k st(k) ≥ 0) and γt ≥ 1 which are used to com-
pute the weighting wt over encoded source sen-
tence ĥs for s = 1, 2, ...

score(ht, ĥs)← h>t Waĥs (11)

wct (s)←
exp(βt ∗ score(ht, ĥs))∑
s′ exp(βt ∗ score(ht, ĥs′))

(12)

wg
t ← gtw

c
t + (1− gt)wt−1 (13)

w̃t(s)←
N−1∑

j=0

wgt (j)st(s− j) (14)

wt(s)←
w̃t(s)

γt

∑N−1
j=0 w̃t(j)γt

(15)

Equations (11) and (12) represent the standard
content based addressing of Luong style attention.
Equations (13-15) replicate equations (5-7) of the
NTM to enable iteration from the currently at-
tended source sentence token wc

t or the previously
attended token wt−1. As with the NTM equation
(14) represents a 1D convolution on the weighting
wg
t with a convolutional shift kernel which is out-

putted by the decoder to enable iteration. Equation
(15) corrects for any blurring resulting from the
1D convolution. We can see that such an attention
mechanism has the content based addressing capa-
bility of Luong attention and the same capability
to iterate from previously computed addresses as
NTMs.

3.2 Memory-Augmented Decoder (M.A.D)
The introduction of attention mechanisms has
proved highly successful for neural machine trans-
lation. Attention extends the writable memory ca-
pacity of the encoder in an encoder-decoder model
linearly with the length of the source sentence.
This avoids the bottleneck of having to encode the
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Figure 1: Memory augmented decoder

whole source sentence meaning into the fixed size
vector passed from the encoder to decoder (Bah-
danau et al., 2014; Cho et al., 2014a). But the de-
coder in an attentional encoder-decoder must still
maintain a history of its past actions in a fixed
size vector. We are motivated by the success of
attention which extended the memory capacity of
the encoder to propose the addition of an exter-
nal memory unit to the decoder of an attentional
encoder-decoder, hence extending the decoder’s
memory capacity, fig. 1. We still maintain a read-
only attention mechanism into the encoded source
sentence, however the decoder now has the ability
to read and write to an external memory unit. We
can set the external memory unit to have a number
of memory locations greater than the maximum
target sentence length in the corpus, thus scaling
the decoder’s memory capacity with the target sen-
tence length in a similar vain as to how attention
scaled the encoder’s memory capacity with source
sentence length.

We note that a similar model has been proposed
before (Wang et al., 2016), but that in order to train
their model the authors propose a pre-training ap-
proach based on first training without the external
memory unit attached to decoder and then adding

it on. This approach restricts the form of possi-
ble memory interactions as it must be possible to
add the external memory unit while maintaining
the pre-trained weights of the attentional encoder-
decoder. We simply make the decoder a NTM with
the standard read and write heads into an external
memory and an additional read head into the en-
coded source sentence with the addresses on this
read head computed in Luong attention style, but
other choices for the addressing mechanism are
possible, including DNC style addressing. Fol-
lowing a recent stable NTM implementation (Col-
lier and Beel, 2018) we do not have any problems
training our proposed model.

3.3 Pure Memory-Augmented Neural
Network

We propose a pure MANN model for machine
translation, fig. 2. Under our proposed model a
MANN receives the embedded source sentence as
input one token at a time and then receives an
end of sequence token. The MANN must then
output the target sentence. We are motivated by
the enhanced performance of MANNs compared
to LSTMs on artificial sequence learning tasks
(Graves et al., 2014; Graves et al., 2016; Rae et
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Figure 2: Pure memory augmented neural network for machine translation

al., 2016).
We note that our proposed model has the rep-

resentational capability to learn a solution similar
to an attentional encoder-decoder by simply writ-
ing an encoding of each source sentence token to a
single memory location and reading the encodings
back using content based addressing after the end
of sequence token.

We also highlight the differences to the atten-
tional encoder-decoder model. The pure MANN
model may have multiple read and write heads
each of which uses more powerful addressing
mechanisms than popular attention mechanisms.
The proposed model may also update previously
written locations in light of new information or
reuse memory locations if the previous contents
have already served their purpose. There is no sep-
aration between encoding and decoding and thus
only a single RNN is used as the MANN’s con-
troller rather than different RNN cells for the en-
coder and decoder in an encoder-decoder, halv-
ing the number of network parameters dedicated
to this part of the network.

In this paper for the pure MANN model we
use and compare NTMs and DNCs as the choice
MANN, however any other MANN with differen-
tiable read and write mechanisms into an external
memory unit would be permissible. In both cases
we use a LSTM controller. We also compare the
use of multiple read and write heads for the NTM
model.

4 Methodology

We evaluate our models on two machine transla-
tion tasks. As a low resource spoken language task

we use the 2015 International Workshop on Spo-
ken Language’s dataset of English to Vietnamese
translated TED talks. We follow (Luong and Man-
ning, 2015) in their preprocessing and setup and
use their results as a baseline. For training we use
TED tst2013, a dataset of 133K sentence pairs. As
the validation set we use TED tst2012 and test set
results are reported on the TED tst2015 dataset.
We use a fixed vocabulary of 17.5K words and
7.7K words for English and Vietnamese respec-
tively. Any words outside the source or target vo-
cabulary are mapped to an unknown token (UNK).

As a medium resource written language task we
follow (Sennrich et al., 2016a) in their general
setup for the Romanian to English task from the
ACL’s 2016 First Conference on Machine Trans-
lation’s, Machine Translation of News Task. We
use their results as a baseline. We train our models
on the Europarl English Romanian dataset which
consists of 600k sentence pairs. We use the news-
dev2016 and newstest2016 datasets as the valida-
tion and test sets respectively. We Byte Pair En-
code (Sennrich et al., 2016b) the source and tar-
get languages with 89,500 merge operations. After
Byte Pair Encoding, the English vocabulary size
is 48,824 sub-words and 65,699 sub-words for the
Romanian vocabulary.

For all models we use the Adam optimizer
(Kingma and Ba, 2014) with an initial learning
rate of 0.001. We train for a fixed number of
steps but after each epoch we measure the BLEU
score on the validation set and measure the test set
performance from the version of the model with
the highest validation set BLEU score. For the
Vietnamese→English models we train for 14,000
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Model Dev Test
(Luong and Manning, 2015) - 23.3
NTM Style Attention 21.5 23.6
M.A.D. (1 R/W head) 21.1 23.1
M.A.D. (2 R/W heads) 21.2 23.8
Pure MANN (NTM - 1 R/W head) 20.9 23.5
Pure MANN (NTM - 2 R/W heads) 21.3 23.5
Pure MANN (DNC - 1 R/W head) 20.6 23.6

Table 1: Vietnamese→English translation results
(BLEU) on dev (TED tst2012) and test (TED
tst2013) sets. M.A.D↔Memory-Augmented De-
coder. 1 R/W head means the MANN had 1 read
and 1 write head into external memory.

steps and for the Romanian→English models we
train for 120,000 steps.

For all models we use beam search with a beam
width of 10. We set the dropout rate to 0.3
with no other regularization applied. For both
the Vietnamese→English and Romanian→English
tasks we follow (Luong and Manning, 2015; Sen-
nrich et al., 2016a) in using a stack of 2 x 512 unit
LSTMs as the encoder and decoder for all relevant
models and the controller network for the MANNs.
For the memory-augmented decoder the number of
memory locations is set to 64 and each memory
location is a 512 dimensional vector. Whereas for
the pure MANN model the number of memory lo-
cations is set to 128 with the memory cell size also
set to 512.

We implement our model in Tensorflow, extend-
ing Google’s NMT implementation (Luong et al.,
2017), and make it available publicly1.

5 Results

The test set BLEU scores for the
Vietnamese→English translation task are all
very similar, with each model’s score within the
range of 23.1-23.8 BLEU (table 1). Interestingly,
despite the pure MANN models seeing the source
sentence in a uni-directional fashion (with all
other models using bi-directional encoders) the
pure MANN models perform on par with the other
models.

The attentional encoder-decoder (Sennrich et
al., 2016a) has the highest test set BLEU score of
all the models for the Romanian→English transla-

1https://github.com/MarkPKCollier/
MANNs4NMT

Model Dev Test
(Sennrich et al., 2016a) 30.0 29.2
NTM Style Attention 30.0 28.7
M.A.D. (1 R/W head) 29.8 28.9
M.A.D. (2 R/W heads) 29.7 28.3
Pure MANN (NTM - 1 R/W head) 28.9 27.7
Pure MANN (NTM - 2 R/W heads) 28.0 27.3
Pure MANN (DNC - 1 R/W head) 27.8 27.5

Table 2: Romanian→English translation results
(BLEU) on dev (newsdev2016) and test (new-
stest2016) sets. M.A.D ↔ Memory-Augmented
Decoder. 1 R/W head means the MANN had 1
read and 1 write head into external memory.

tion task (table 2). The proposed extensions to the
attentional encoder-decoder result in 0.3-0.9 lower
test set BLEU score. For the Romanian→English
translation task, the pure MANN model has 1.5-
1.9 lower test set BLEU score.

5.1 Analysis

We now examine the attention weights for an at-
tentional encoder-decoder and address computa-
tion for the 1 R/W head NTM on a particular
Romanian→English translation. The sentence was
chosen as it was the first sentence in our test set
which had the same translation from both models.
We note that the pattern of addresses are typical
of the addresses computed on other sentences for
both language pairs, but that a single typical exam-
ple is presented for brevity.

Figure 3: Example attention weights for atten-
tional encoder-decoder
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We see that we replicate the monotonic iteration
through the source sentence often observed in at-
tention mechanisms (Bahdanau et al., 2014; Raffel
et al., 2017) in fig. 3. We note that this pattern
of addressing must be computed solely using the
content based addressing of the attention mecha-
nism as no iteration capability is available to the
attention weight computation.

We now examine how the NTM has computed
the addresses for its read and write head in order
to arrive at the same resulting translation. Look-
ing first at the write head, fig. 4, we see that as the
NTM is shown the source sentence it has learned
a very similar strategy to the encoder of an atten-
tional encoder-decoder. In particular we can see
that the write head writes an encoded version of
the source sentence tokens to successive memory
locations, fig. 4a. Interestingly we see that the
successive memory locations are computed using
the iteration cabability of the NTM as the content
based addresses are not significant, fig. 4b and the
shift kernel is iterating forward through memory,
fig. 4d from the address at the previous timestep
as can be seen from the interpolation gate, fig.
4c. If we interpret the encoded source sentence
for an attentional encoder-decoder as being writ-
ten to memory, then this is precisely the form of
addresses we would see - except that in the case of
a NTM the addressing strategy is learned not hard-
coded. This suggests that this particular inductive
bias built into the attentional encoder-decoder is a
sensible one.

The attentional encoder-decoder leaves the en-
coded source sentence unchanged during decoding
as it has no write mechanism. However we observe
that the write head is active during decoding for
the NTM, fig. 4a. We see that the NTM uses con-
tent based addressing, fig. 4b to write to the mem-
ory locations that are previously read from by the
read head , fig. 5. This suggests that perhaps the
NTM has developed a strategy of marking partic-
ular source sentence tokens as completed so as not
to retranslate them later during decoding. Interest-
ingly such a mechanism is built directly into the
DNC (Graves et al., 2016) and in fact monotonic
attention mechanisms have been developed which
prevent retranslation of previously translated to-
kens or preceeding tokens in the source sentence
(Raffel et al., 2017). But here of course this strat-
egy is learned from random initialization by the
NTM.

(a) Full address

(b) Content based addressing

(c) Interpolation gate

(d) Shift kernel

Figure 4: Example write head address computation
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(a) Full address

(b) Content based addressing

(c) Interpolation gate

(d) Shift kernel

Figure 5: Example read head address computation

Having seen that the NTM learns to write the en-
coded source sentence to successive memory loca-
tions we are not surprised that as the predicted sen-
tence is produced the NTM reads the from mem-
ory locations similarly to the attentional encoder-
decoder. We see that the previously written to
memory locations are then read back from, fig. 5a.
Interestingly, we see the read head addresses of
the NTM as it produces the predicted sentence are

heavily determined by its content based address-
ing, fig. 5b. Thus the NTM does not make sig-
nificant use of its iteration capability, despite ex-
hibiting the type of monotonic iteration through
the source sentence as has been observed with at-
tention mechanisms.

We also note that the read head of the NTM
is not particularly focused as the NTM sees the
source sentence, fig. 5a. This is somewhat surpris-
ing as the results of the read operation are avail-
able to the controller at the next timestep and thus
could be used to retrieve the encoding of a pre-
vious source sentence token or a summary of a
section of the source sentence rather than rely-
ing on the LSTM controller memory solely for
this. We suspect that this behaviour is the result of
the read head operation not being available to the
write head at the current timestep and thus cannot
be used to disambiguate the current token as has
been the motivation for the successful Transformer
NMT model (Vaswani et al., 2017). Thus, we sug-
gest that extending the NTM and other MANNs
depth-wise to have successive rather than parallel
operations on the memory matrix at each timestep
may be a fruitful avenue of future research.

6 Conclusion

We have proposed a series of MANN in-
spired models for machine translation. Two
of these models; NTM Style Attention and the
Memory-Augmented Decoder extend the atten-
tional encoder-decoder which has achieved state-
of-the-art results on many language pairs. These
extensions perform 0.2-0.5 BLEU better than the
attentional encoder-decoder alone on the low re-
source Vietnamese→English translation task and
0.3-0.9 lower BLEU on the Romanian→English
translation task. We conclude that a content based
addressing mechanism is sufficient to encode a
strategy of monotonic iteration through source sen-
tences and that enabling the network to express this
strategy directly does not significantly improve
translation quality. From the Memory-Augmented
Decoder results it appears as though extending the
memory capacity of the decoder in an attentional
encoder-decoder does not offer an advantage, con-
trary to previous results (Wang et al., 2016).

Our third proposed model is to just use MANNs
directly for machine translation. As far as we
are aware we are the first to publish results on
MANNs used directly for machine translation.
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The pure MANN model performs marginally bet-
ter, +0.2-0.3 BLEU, than the attentional encoder-
decoder for the Vietnamese→English translation
task. Performance is 0.3-1.9 BLEU worse for the
Romanian→English translation task. We conclude
that MANNs in their current form do not improve
over the attentional encoder-decoder for machine
translation. Our analysis of the algorithm learned
by the pure MANN shows that despite being ran-
domly initialized the pure MANN learns a very
similar solution to the attentional encoder-decoder.

We note that the performance gap between the
pure MANN and attentional encoder-decoder is
not very large and that the pure MANN model
is very general and does not incorporate any do-
main specific knowledge. MANNs are a relatively
new architecture that have received less attention
than encoder-decoder approaches. We expect that
with the development of improved MANN archi-
tectures, MANNs could achieve state-of-the-art re-
sults for machine translation.

Acknowledgements
This publication emanated from research con-

ducted with the financial support of Science
Foundation Ireland (SFI) under Grant Number
13/RC/2106.

References
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoderdecoder
approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 103–111.

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gul-
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