
Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 78–84
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

78

Unbabel’s Participation
in the WMT19 Translation Quality Estimation Shared Task

Fábio Kepler
Unbabel

Jonay Trénous
Unbabel

Marcos Treviso
Instituto de Telecomunicações

Miguel Vera
Unbabel

António Góis
Unbabel

M. Amin Farajian
Unbabel

António V. Lopes
Unbabel

André F. T. Martins
Unbabel

{kepler, sony, miguel.vera}@unbabel.com
{antonio.gois, amin, antonio.lopes, andre.martins}@unbabel.com

marcosvtreviso@gmail.com

Abstract

We present the contribution of the Unbabel
team to the WMT 2019 Shared Task on Qual-
ity Estimation. We participated on the word,
sentence, and document-level tracks, encom-
passing 3 language pairs: English-German,
English-Russian, and English-French. Our
submissions build upon the recent OpenKiwi
framework: we combine linear, neural, and
predictor-estimator systems with new transfer
learning approaches using BERT and XLM
pre-trained models. We compare systems in-
dividually and propose new ensemble tech-
niques for word and sentence-level predic-
tions. We also propose a simple technique
for converting word labels into document-level
predictions. Overall, our submitted systems
achieve the best results on all tracks and lan-
guage pairs by a considerable margin.

1 Introduction

Quality estimation (QE) is the task of evaluating
a translation system’s quality without access to
reference translations (Blatz et al., 2004; Specia
et al., 2018). This paper describes the contribution
of the Unbabel team to the Shared Task on Word,
Sentence, and Document-Level (QE Tasks 1 and
2) at WMT 2019.

Our system adapts OpenKiwi,1 a recently re-
leased open-source framework for QE that im-
plements the best QE systems from WMT 2015-
18 shared tasks (Martins et al., 2016, 2017; Kim
et al., 2017; Wang et al., 2018), which we extend
to leverage recently proposed pre-trained models

1https://unbabel.github.io/OpenKiwi.

via transfer learning techniques. Overall, our main
contributions are as follows:

• We extend OpenKiwi with a Transformer
predictor-estimator model (Wang et al., 2018).

• We apply transfer learning techniques, fine-
tuning BERT (Devlin et al., 2018) and XLM
(Lample and Conneau, 2019) models in a
predictor-estimator architecture.

• We incorporate predictions coming from the
APE-BERT system described in Correia and
Martins (2019), also used in this year’s Unba-
bel’s APE submission (Lopes et al., 2019).

• We propose new ensembling techniques for
combining word-level and sentence-level pre-
dictions, which outperform previously used
stacking approaches (Martins et al., 2016).

• We build upon our BERT-based predictor-
estimator model to obtain document-level anno-
tation and MQM predictions via a simple word-
to-annotation conversion scheme.

Our submitted systems achieve the best results
on all tracks and all language pairs by a consid-
erable margin: on English-Russian (En-Ru), our
sentence-level system achieves a Pearson score
of 59.23% (+5.96% than the second best sys-
tem), and on English-German (En-De), we achieve
57.18% (+2.44%).

2 Word and Sentence-Level Task

The goal of the word-level QE task is to as-
sign quality labels (OK or BAD) to each machine-
translated word, as well as to gaps between words

https://unbabel.github.io/OpenKiwi


79

(to account for context that needs to be inserted),
and source words (to denote words in the origi-
nal sentence that have been mistranslated or omit-
ted in the target). The goal of the Sentence-level
QE task, on the other hand, is to predict the qual-
ity of the whole translated sentence, based on how
many edit operations are required to fix it, in terms
of HTER (Human Translation Error Rate) (Specia
et al., 2018). We next describe the datasets, re-
sources, and models that we used for these tasks.

2.1 Datasets and Resources

The data resources we use to train our systems are
of three types: the QE shared task corpora, addi-
tional parallel corpora, and artificial triplets (src,
pe, mt) in the style of the eSCAPE corpus (Negri
et al., 2018).

• The En-De QE corpus provided by the shared
task, consisting of 13,442 train triplets.

• The En-Ru QE corpus provided by the shared
task, consisting of 15,089 train triplets.

• The En-De parallel dataset of 3,396,364 sen-
tences from the IT domain provided by the
shared task organizers. which we extend in the
style of the eSCAPE corpus to contain artificial
triplets. To do this, we use OpenNMT with 5-
fold jackknifing (Klein et al., 2017) to obtain
unbiased translations of the source sentences.

• The En-Ru eSCAPE corpus (Negri et al., 2018)
consisting of 7,735,361 artificial triplets.

2.2 Linear Sequential Model

Our simplest baseline is the linear sequential
model described by Martins et al. (2016, 2017). It
is a discriminative feature-based sequential model
(called LINEARQE). The system uses a first-order
sequential model with unigram and bigram fea-
tures, whose weights are learned by using the max-
loss MIRA algorithm (Crammer et al., 2006). The
features include information about the words, part-
of-speech tags, and syntactic dependencies, ob-
tained with TurboParser (Martins et al., 2013).

2.3 NuQE

We used NUQE (NeUral Quality Estimation) as
implemented in OpenKiwi (Kepler et al., 2019)
and adapted it to jointly learn MT tags, source tags
and also sentence scores. We use the original ar-
chitecture with the following additions. For learn-
ing sentence scores, we first take the average of

the MT tags output layer and than pass the result
through a feed-forward layer that projects the re-
sult to a single unit. For jointly learning source
tags, we take the source text embeddings, project
them with a feed-forward layer, and then sum the
MT tags output vectors that are aligned. The re-
sult is then passed through a feed-forward layer,
a bi-GRU, two other feed-forward layers, and fi-
nally an output layer. The layer dimensions are
the same as in the normal model. It is worth
noting that NUQE is trained from scratch using
only the shared task data, with no pre-trained com-
ponents, besides Polyglot embeddings (Al-Rfou
et al., 2013).

2.4 RNN-Based Predictor-Estimator
Our implementation of the RNN-based prediction
estimator (PREDEST-RNN) is described in Kepler
et al. (2019). It follows closely the architecture
proposed by Kim et al. (2017), which consists of
two modules:

• a predictor, which is trained to predict each to-
ken of the target sentence given the source and
the left and right context of the target sentence;

• an estimator, which takes features produced by
the predictor and uses them to classify each
word as OK or BAD.

Our predictor uses a biLSTM to encode the source,
and two unidirectional LSTMs processing the tar-
get in left-to-right (LSTM-L2R) and right-to-left
(LSTM-R2L) order. For each target token ti, the
representations of its left and right context are con-
catenated and used as query to an attention mod-
ule before a final softmax layer. It is trained on
the large parallel corpora mentioned above. The
estimator takes as input a sequence of features:
for each target token ti, the final layer before the
softmax (before processing ti), and the concate-
nation of the i-th hidden state of LSTM-L2R and
LSTM-R2L (after processing ti). We train this
system with a multi-task architecture that allows
us to predict sentence-level HTER scores. Over-
all, this system is capable to predict sentence-level
scores and all word-level labels (for MT words,
gaps, and source words)—the source word labels
are produced by training a predictor in the reverse
direction.

2.5 Transformer-Based Predictor-Estimator
In addition, we implemented a Transformer-based
predictor-estimator (PREDEST-TRANS), follow-



80

ing Wang et al. (2018). This model has the fol-
lowing modifications in the predictor: (i) in or-
der to encode the source sentence, the bidirec-
tional LSTM is replaced by a Transformer en-
coder; (ii) the LSTM-L2R is replaced by a Trans-
former decoder with future-masked positions, and
the LSTM-R2L is replaced by a Transformer de-
coder with past-masked positions. Additionally,
the Transformer-based model produces the “mis-
match features” proposed by Fan et al. (2018).

2.6 Transfer Learning and Fine-Tuning

Following the recent trend in the NLP commu-
nity leveraging large-scale language model pre-
training for a diverse set of downstream tasks,
we used two pre-trained language models as fea-
ture extractors, the multilingual BERT (Devlin
et al., 2018) and the Cross-lingual Language
Model (XLM) (Lample and Conneau, 2019). The
predictor-estimator model consists of a predic-
tor that produces contextual token representations,
and an estimator that turns these representations
into predictions for both word level tags, and sen-
tence level scores. As both of these models pro-
duce contextual representations for each token in
a pair of sentences, we simply replace the predic-
tor part by either BERT or XLM to create new QE
models: PREDEST-BERT and PREDEST-XLM.
The XLM model is particularly well suited to the
task at hand, as its pre-training objective already
contains a translation language modeling part.

For improved performance, we employ a pre-
fine-tuning step by continuing their language
model pre-training on data that is closer to the do-
main of the shared task. For the En-De pair we
used the in-domain data provided by the shared
task, and for the En-Ru pair we used the eSCAPE
corpus (Negri et al., 2018).

Despite the shared multilingual vocabulary,
BERT is originally a monolingual model, treat-
ing the input as either being from one lan-
guage or another. We pass both sentences as
input by concatenating them according to the
template: [CLS] target [SEP] source
[SEP], where [CLS] and [SEP] are special
symbols from BERT, denoting beginning of sen-
tence and sentence separators, respectively. In
contrast, XLM is a multilingual model which re-
ceives two sentences from different languages as
input. Thus, its usage is straightforward.

The output from BERT and XLM is split into

target features and source features, which in turn
are passed to the regular estimator. They work
with word pieces rather than tokens, so the model
maps their output to tokens by selecting the first
word piece of each token. For En-Ru the mapping
is slightly different, it is done by taking the aver-
age of the word pieces of each token.

For PREDEST-BERT, we obtained the best re-
sults by ignoring features from the other lan-
guage, that is, for predicting target and gap tags
we ignored source features, and for predicting
source tags we ignored target features. On the
other hand, PREDEST-XLM predicts labels for
target, gaps and source at the same time. As the
predictor-estimator model, PREDEST-BERT and
PREDEST-XLM are trained in a multi-task fash-
ion, predicting sentence-level scores along with
word-level labels.

2.7 APE-QE

In addition to traditional QE systems, we also
use Automatic Post-Editing (APE) adapted for QE
(APE-QE), following Martins et al. (2017). An
APE system is trained on the human post-edits
and its outputs are used as pseudo-post-editions
to generate word-level quality labels and sentence-
level scores in the same way that the original labels
were created.

We use two variants of APE-QE:

• PSEUDO-APE, which trains a regular transla-
tion model and uses its output as a pseudo-
reference.

• An adaptation of BERT to APE (APE-BERT)
with an additional decoding constraint to re-
ward or discourage words that do not exist in
the source or MT.

PSEUDO-APE was trained using
OpenNMT-py (Klein et al., 2017). For En-
De, we used the IT domain corpus provided by the
shared task, and for En-Ru we used the Russian
eSCAPE corpus (Negri et al., 2018).

For APE-BERT, we follow the approach
of Correia and Martins (2019), also used by Unba-
bel’s APE shared task system (Lopes et al., 2019),
and adapt BERT to the APE task using the QE in-
domain corpus and the shared task data as input,
where the source and MT sentences are the en-
coder’s input and the post-edited sentence is the
decoder’s output. In addition, we also employ a
conservativeness penalty (Lopes et al., 2019), a



81

METHOD TARGET F1

STACKED LINEAR 43.88
POWELL 44.61

Table 1: Performance of the stacked linear ensem-
ble and Powell’s method on the WMT17 dev set (F1-
MULT on MT tags). The ensemble is over the same
set of models3 reported in the release of the OpenKiwi
(Kepler et al., 2019) framework. To estimate the per-
formance of Powell’s method, the dev set was parti-
tioned into 10 folds fi. We ran Powell’s method 10
times, leaving out one fold at a time, to learn weights
wi. Predicting on fold fi using weights wi and calcu-
lating F1 performance over the concatenation of these
predictions gives an approximately unbiased estimate
of the performance of the method.

beam decoding penalty which either rewards or
penalizes choosing tokens not in the src and mt,
with a negative score to encourage more edits of
the MT.

2.8 System Ensembling

We ensembled the systems above to produce a sin-
gle prediction, as described next.

Word-level ensembling. We compare two ap-
proaches:

• A stacked architecture with a feature-based
linear system, as described by Martins et al.
(2017). This approach uses the predictions of
various systems as additional features in the lin-
ear system described in §2.2. To avoid overfit-
ting on the training data, this approach requires
jackknifing.

• A novel strategy consisting of learning a con-
vex combination of system predictions, with the
weights learned on the development set. We use
Powell’s conjugate direction method (Powell,
1964)2 as implemented in SciPy (Jones et al.,
2001) to directly optimize for the task metric
(F1-MULT).

Using the development set for learning carries a
risk of overfitting; by using k-fold cross-validation
we avoided this, and indeed the performance is
equal or superior to the linear stacking ensemble
(Table 1), while being computationally cheaper as
only the development set is needed to learn an en-
semble, avoiding jackknifing.

2This is the method underlying the popular MERT method
(Och, 2003), widely used in the MT literature.

Sentence-level ensembling. We have systems
outputting sentence-level predictions directly, and
others outputting word-level probabilities that can
be turned into sentence-level predictions by aver-
aging them over a sentence, as in (Martins et al.,
2017). To use all available features (sentence
score, gap tag, MT tag and source tag predictions
from all systems used in the word-level ensem-
bles), we learn a linear combination of these fea-
tures using `2-regularized regression over the de-
velopment set. We tune the regularization constant
with k-fold cross-validation, and retrain on the full
development set using the chosen value.

3 Document-Level Task

Estimating the quality of an entire document intro-
duces additional challenges. The text may become
too long to be processed at once by previously de-
scribed methods, and longer-range dependencies
may appear (e.g inconsistencies across sentences).

Both sub-tasks were addressed: estimating
the MQM score of a document and identify-
ing character-level annotations with correspond-
ing severities. Note that, given the correct number
of annotations in a document and their severities,
the MQM score can be computed in closed form.
However, preliminary experiments using the pre-
dicted annotations to compute MQM did not out-
perform the baseline, hence we opted for using in-
dependent systems for each of these sub-tasks.

3.1 Dataset

The data for this task consists of Amazon reviews
translated from English to French using a neural
MT system. Translations were manually anno-
tated for errors, with each annotation associated
to a severity tag (minor, major or critical).

Note that each annotation may include several
words, which do not have to be contiguous. We
refer to each contiguous block of characters in an
annotation as a span, and refer to an annotation
with at least two spans as a multi-span annotation.
Figure 1 illustrates this, where a single annotation
is comprised of the spans bandes and parfaits.

Across training set and last year’s development
and test set, there are 36,242 annotations. Out of
these, 4,170 are multi-span, and 149 of the multi-
span annotations contain spans in different sen-
tences. The distribution of severities is 84.12% of
major, 11.74% of minor and 4.14% of critical.



82

Source: resistance bands are great for home use,
gym use, offices, and are ideal for travel.

Target: les bandes de résistance sont parfaits pour 
l’usage domestique, l’utilisation de la salle de gym,
bureaux et sont idéales pour les voyages.

Figure 1: Example of a multi-span annotation contain-
ing two spans: parfaits does not agree with bandes due
to gender—it should be parfaites. This mistake corre-
sponds to a single annotation with severity “minor”.

3.2 Implemented System

To predict annotations within a document the
problem is first treated as a word-level task, with
each sentence processed separately. To obtain
gold labels, the training set is tokenized and an
OK/BAD tag is attributed to each token, depending
on whether the token contains characters belong-
ing to an annotation. Note that besides token tags,
we will also have gap tags in between tokens. A
gap tag will only be labeled as BAD if a span be-
gins and ends exactly in the borders of the gap.
Our best-performing model for the word-level part
is an ensemble of 5 BERT models. Each BERT
model was trained as described in §2.6, but with-
out pre-fine-tuning. Systems were ensembled by a
simple average.

Later, annotations may be retrieved from the
predicted word-level tags by concatenating con-
tiguous BAD tokens into a single annotation. This
is done for token-tags, while each gap-tag can
be directly mapped to a single annotation without
attempting any merge operation. Note that this
immediately causes 4 types of information loss,
which can be addressed in a second step:

• Severity information is lost, since all three
severity labels are converted to BAD tags. As
a baseline, all spans are assigned the most fre-
quent severity, “major.”

• Span borders are defined on character-level,
whose positions may not match exactly the be-
ginning or ending of a token. This will cause
all characters of a partially correct token to be
annotated with an error.

• Contiguous BAD tokens will always be mapped
to a single annotation, even if they belong to dif-
ferent ones.

• Non-contiguous BAD tokens will always be
mapped to separate annotations, even if they be-
long to the same one.

PAIR SYSTEM TARGET F1 SOURCE F1 PEARSON

En-De

LINEAR 0.3346 0.2975 -
APE-QE 0.3740 0.3446 0.3558
APE-BERT 0.4244 0.4109 0.3816
PREDEST-RNN 0.3786 - 0.5020
PREDEST-TRANS 0.3980 - 0.5300
PREDEST-XLM 0.4144 0.3960 0.5810
PREDEST-BERT 0.3870 0.3310 0.5190
LINEAR ENS. 0.4520 0.4116 -
(*)POWELL’S ENS. 0.4872 0.4607 0.5968

En-Ru

LINEAR 0.2839 0.2466 -
APE-QE 0.2592 0.2336 0.1921
APE-BERT 0.2519 0.2283 0.1814
NUQE 0.3130 0.2000 -
PREDEST-RNN 0.3201 - -
PREDEST-TRANS 0.3414 - 0.3655
PREDEST-XLM 0.3799 0.3280 0.4983
PREDEST-BERT 0.3782 0.3039 0.5000
(*)ENSEMBLE 1 0.3932 0.3640 0.5469
(*)ENSEMBLE 2 0.3972 0.3700 0.5423

Table 2: Word and sentence-level results for En-De
and En-Ru on the validation set in terms of F1-MULT
and Pearson’s r correlation. (*) Lines with an aster-
isk use Powell’s method for word level ensembling and
`2-regularized regression for sentence level. As the
weights are tuned on the dev set, their numbers can not
be directly compared to the other models

Although more sophisticated approaches were
tested for predicting severities and merging spans
into the same annotation, these approaches did not
result in significant gains, hence we opted by us-
ing the previously described pipeline as our final
system. To predict document-level MQM, each
sentence’s MQM is first predicted and used to get
the average sentence MQM (weighting the aver-
age by sentence length degraded results in all ex-
periments). This is used together with 3 percent-
ages of BAD tags from the word-level model (con-
sidering token tags, gap tags and all gaps) as fea-
tures for a linear regression which outputs the final
document-level MQM prediction. The percentage
of BAD tags is obtained from the previously de-
scribed word-level predictions, whereas the sen-
tence MQMs are obtained from an ensemble of
5 BERT models trained for sentence-level MQM
prediction. Again, each BERT model was trained
as described in §2.6 without pre-fine-tuning, and
the ensembling consisted of a simple average.4

4 Experimental Results

4.1 Word and Sentence-Level Task
The results achieved by each of the systems de-
scribed in §2 for En-De and En-Ru on the valida-

4Using the approach of Ive et al. (2018) proved less ro-
bust to this year’s data due to differences in the annotations.
Particularly some outliers containing zero annotations would
strongly harm the final Pearson score when mis-predicted.



83

PAIR SYSTEM TARGET F1 TARGET MCC SOURCE F1 SOURCE MCC PEARSON

En-Ru
Baseline 0.2412 0.2145 0.2647 0.1887 0.2601
ENSEMBLE 1 0.4629 0.4412 0.4174 0.3729 0.5889
ENSEMBLE 2 0.4780 0.4577 0.4541 0.4212 0.5923

En-De
Baseline 0.2974 0.2541 0.2908 0.2126 0.4001
LINEAR ENSEMBLE 0.4621 0.4387 0.4284 0.3846 -
POWELL’S ENSEMBLE 0.4752 0.4585 0.4455 0.4094 0.5718

Table 3: Word and sentence-level results for En-De and En-Ru on the test set in terms of F1-MULT and Pearson’s
r correlation.

tion set are shown in Table 2. We tried the follow-
ing strategies for ensembling:

• For En-De, we created a word-level ensem-
bled system with Powell’s method, by com-
bining one instance of the APE-BERT sys-
tem, another instance of the PSEUDO-APE-
QE system, 10 runs of the PREDEST-XLM
model (trained jointly for all subtasks), 6 runs of
the same model without pre-fine-tuning, 5 runs
of the PREDEST-BERT model (trained jointly
for all subtasks), and 5 runs of the PREDEST-
TRANS model (trained jointly for MT and sen-
tence subtasks, but not for predicting source
tags). For comparison, we report also the per-
formance of a stacked linear ensembled word-
level system. For the sentence-level ensemble,
we learned system weights by fitting a linear re-
gressor to the sentence scores produced by all
the above models.

• For En-Ru, we tried two versions of word-
level ensembled systems, both using Powell’s
method: EMSEMBLE 1 combined one instance
of the APE-BERT system, 5 runs of the
PREDEST-XLM model (trained jointly for all
subtasks), one instance of the PREDEST-BERT
model (trained jointly for all subtasks), 5 runs
of the NUQE models (trained jointly for all
subtasks), and 5 runs of the PREDEST-TRANS

model (trained jointly for MT and sentence sub-
tasks, but not for predicting source tags). EM-
SEMBLE 2 adds to the above predictions from
the PSEUDO-APE-QE system. In both cases,
for sentence-level ensembles, we learned sys-
tem weights by fitting a linear regressor to the
sentence scores produced by all the above mod-
els.

The results in Table 2 show that the transfer
learning approach with BERT and XLM bene-
fits the QE task. The PREDEST-XLM model,
which has been pre-trained with a translation ob-

DEV DEV0 TEST

F1 ANN. (BERT) 0.4664 0.4457 0.4811
MQM (BERT) 0.3924 - 0.3727
MQM (LINBERT) - 0.4714 0.3744

Table 4: Results of document-level submissions, and
their performance of the dev and dev0 validation sets.

jective, has a small but consistent advantage over
both PREDEST-BERT and PREDEST-TRANSF. A
clear takeaway is that ensembling of different sys-
tems can give large gains, even if some of the sub-
systems are weak individually.

Table 3 shows the results obtained with our en-
semble systems on the official test set.

4.2 Document-Level Task

Finally, Table 4 contains results for document-
level submissions, both on validation and test set
submissions. On F1 annotations, results across all
data sets are reasonably consistent. On the other
hand, MQM Pearson varies significantly between
dev and dev0. Differences in the training of the
two systems shouldn’t explain this variation, since
both have equivalent performance on the test set.

5 Conclusions

We presented Unbabel’s contribution to the WMT
2019 Shared Task on Quality Estimation. Our
submissions are based on the OpenKiwi frame-
work, to which we added new transfer learning ap-
proaches via BERT and XLM pre-trained models.
We also proposed a new ensemble technique using
Powell’s method that outperforms previous strate-
gies, and we convert word labels into span anno-
tations to obtain document-level predictions. Our
submitted systems achieve the best results on all
tracks and language pairs.



84

Acknowledgments

The authors would like to thank the support
provided by the EU in the context of the
PT2020 project (contracts 027767 and 038510),
by the European Research Council (ERC StG
DeepSPIN 758969), and by the Fundação
para a Ciência e Tecnologia through contract
UID/EEA/50008/2019.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed Word Represen-
tations for Multilingual NLP. arXiv preprint
arXiv:1307.1662.

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence Esti-
mation for Machine Translation. In Proc. of the In-
ternational Conference on Computational Linguis-
tics, page 315.

Gonçalo Correia and André Martins. 2019. A Simple
and Effective Approach to Automatic Post-Editing
with Transfer Learning. In Proc. of the 57th an-
nual meeting on association for computational lin-
guistics. Association for Computational Linguistics.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
Passive-Aggressive Algorithms. Journal of Ma-
chine Learning Research, 7:551–585.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Kai Fan, Bo Li, Fengming Zhou, and Jiayi Wang.
2018. ”Bilingual Expert” Can Find Translation Er-
rors. arXiv preprint arXiv:1807.09433.

Julia Ive, Carolina Scarton, Frédéric Blain, and Lu-
cia Specia. 2018. Sheffield Submissions for the
WMT18 Quality Estimation Shared Task. In Proc.
of the Third Conference on Machine Translation:
Shared Task Papers, pages 794–800.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001.
SciPy: Open source scientific tools for Python. [On-
line; accessed on May 17th, 2019].

Fábio Kepler, Jonay Trénous, Marcos Treviso, Miguel
Vera, and André F. T. Martins. 2019. OpenKiwi: An
Open Source Framework for Quality Estimation. In
Proc. of the Annual Meeting of the Association for
Computational Linguistics, System Demonstration.
Association for Computational Linguistics.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-Estimator using Multilevel Task

Learning with Stack Propagation for Neural Quality
Estimation. In Conference on Machine Translation
(WMT).

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. OpenNMT:
Open-Source Toolkit for Neural Machine Transla-
tion. arXiv preprint arXiv:1701.02810.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual Language Model Pretraining. arXiv preprint
arXiv:1901.07291.

António V. Lopes, M. Amin Farajian, Gonçalo Correia,
Jonay Trenous, and André F. T. Martins. 2019. Un-
babel’s Submission to the WMT2019 APE Shared
Task: Bert encoder-decoder for Automatic Post-
Editing. In Under review.

André F. T Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the Turbo: Fast Third-
Order Non-Projective Turbo Parsers. In Proc. of
the Annual Meeting of the Association for Compu-
tational Linguistics.

André F. T. Martins, Ramon Astudillo, Chris Hokamp,
and Fábio Kepler. 2016. Unbabel’s Participation in
the WMT16 Word-Level Translation Quality Esti-
mation Shared Task. In Conference on Machine
Translation (WMT).

André F. T. Martins, Marcin Junczys-Dowmunt, Fabio
Kepler, Ramon Astudillo, Chris Hokamp, and Ro-
man Grundkiewicz. 2017. Pushing the Limits of
Translation Quality Estimation. Transactions of the
Association for Computational Linguistics (to ap-
pear).

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. eSCAPE: a Large-scale Syn-
thetic Corpus for Automatic Post-Editing. arXiv
preprint arXiv:1803.07274.

Franz Josef Och. 2003. Minimum Error Rate Train-
ing in Statistical Machine Translation. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics-Volume 1, pages 160–
167. Association for Computational Linguistics.

Michael J. D. Powell. 1964. An Efficient Method for
Finding the Minimum of a Function of Several Vari-
ables without Calculating Derivatives. The Com-
puter Journal, 7(2):155–162.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018. Quality Estimation for Machine
Translation. Synthesis Lectures on Human Lan-
guage Technologies, 11(1):1–162.

Jiayi Wang, Kai Fan, Bo Li, Fengming Zhou, Boxing
Chen, Yangbin Shi, and Luo Si. 2018. Alibaba Sub-
mission for WMT18 Quality Estimation Task. In
Conference on Machine Translation (WMT).

http://www.scipy.org/
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155

