@inproceedings{koehn-etal-2019-findings,
title = "Findings of the {WMT} 2019 Shared Task on Parallel Corpus Filtering for Low-Resource Conditions",
author = "Koehn, Philipp and
Guzm{\'a}n, Francisco and
Chaudhary, Vishrav and
Pino, Juan",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5404",
doi = "10.18653/v1/W19-5404",
pages = "54--72",
abstract = "Following the WMT 2018 Shared Task on Parallel Corpus Filtering, we posed the challenge of assigning sentence-level quality scores for very noisy corpora of sentence pairs crawled from the web, with the goal of sub-selecting 2{\%} and 10{\%} of the highest-quality data to be used to train machine translation systems. This year, the task tackled the low resource condition of Nepali-English and Sinhala-English. Eleven participants from companies, national research labs, and universities participated in this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koehn-etal-2019-findings">
<titleInfo>
<title>Findings of the WMT 2019 Shared Task on Parallel Corpus Filtering for Low-Resource Conditions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francisco</namePart>
<namePart type="family">Guzmán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishrav</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-aug</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Following the WMT 2018 Shared Task on Parallel Corpus Filtering, we posed the challenge of assigning sentence-level quality scores for very noisy corpora of sentence pairs crawled from the web, with the goal of sub-selecting 2% and 10% of the highest-quality data to be used to train machine translation systems. This year, the task tackled the low resource condition of Nepali-English and Sinhala-English. Eleven participants from companies, national research labs, and universities participated in this task.</abstract>
<identifier type="citekey">koehn-etal-2019-findings</identifier>
<identifier type="doi">10.18653/v1/W19-5404</identifier>
<location>
<url>https://aclanthology.org/W19-5404</url>
</location>
<part>
<date>2019-aug</date>
<extent unit="page">
<start>54</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Findings of the WMT 2019 Shared Task on Parallel Corpus Filtering for Low-Resource Conditions
%A Koehn, Philipp
%A Guzmán, Francisco
%A Chaudhary, Vishrav
%A Pino, Juan
%S Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)
%D 2019
%8 aug
%I Association for Computational Linguistics
%C Florence, Italy
%F koehn-etal-2019-findings
%X Following the WMT 2018 Shared Task on Parallel Corpus Filtering, we posed the challenge of assigning sentence-level quality scores for very noisy corpora of sentence pairs crawled from the web, with the goal of sub-selecting 2% and 10% of the highest-quality data to be used to train machine translation systems. This year, the task tackled the low resource condition of Nepali-English and Sinhala-English. Eleven participants from companies, national research labs, and universities participated in this task.
%R 10.18653/v1/W19-5404
%U https://aclanthology.org/W19-5404
%U https://doi.org/10.18653/v1/W19-5404
%P 54-72
Markdown (Informal)
[Findings of the WMT 2019 Shared Task on Parallel Corpus Filtering for Low-Resource Conditions](https://aclanthology.org/W19-5404) (Koehn et al., 2019)
ACL