GTCOM Neural Machine Translation Systems for WMT19

Chao Bei, Hao Zong, Conghu Yuan, Qingming Liu, Baoyong Fan


Abstract
This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT19 shared news translation task. We participate in six directions: English to (Gujarati, Lithuanian and Finnish) and (Gujarati, Lithuanian and Finnish) to English. Further, we get the best BLEU scores in the directions of English to Gujarati and Lithuanian to English (28.2 and 36.3 respectively) among all the participants. The submitted systems mainly focus on back-translation, knowledge distillation and reranking to build a competitive model for this task. Also, we apply language model to filter monolingual data, back-translated data and parallel data. The techniques we apply for data filtering include filtering by rules, language models. Besides, We conduct several experiments to validate different knowledge distillation techniques and right-to-left (R2L) reranking.
Anthology ID:
W19-5305
Volume:
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Month:
August
Year:
2019
Address:
Florence, Italy
Venues:
ACL | WMT | WS
SIG:
SIGMT
Publisher:
Association for Computational Linguistics
Note:
Pages:
116–121
Language:
URL:
https://aclanthology.org/W19-5305
DOI:
10.18653/v1/W19-5305
Bibkey:
Cite (ACL):
Chao Bei, Hao Zong, Conghu Yuan, Qingming Liu, and Baoyong Fan. 2019. GTCOM Neural Machine Translation Systems for WMT19. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 116–121, Florence, Italy. Association for Computational Linguistics.
Cite (Informal):
GTCOM Neural Machine Translation Systems for WMT19 (Bei et al., 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/update-css-js/W19-5305.pdf