
Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, pages 118–131
Dresden, Germany, September 23-25, 2019. c©2019 Association for Computational Linguistics

118

Transition-Based Coding and Formal Language Theory for
Ordered Digraphs

Anssi Yli-Jyrä
University of Helsinki, P.O. Box 4, FIN-00014, Finland

anssi.yli-jyra@helsinki.fi

Abstract
Transition-based parsing of natural lan-
guage uses transition systems to build di-
rected annotation graphs (digraphs) for
sentences. In this paper, we define, for
an arbitrary ordered digraph, a unique de-
composition and a corresponding linear en-
coding that are associated bijectively with
each other via a new transition system.
These results give us an efficient and suc-
cinct representation for digraphs and sets
of digraphs. Based on the system and our
analysis of its syntactic properties, we give
structural bounds under which the set of
encoded digraphs is restricted and becomes
a context-free or a regular string language.
The context-free restriction is essentially a
superset of the encodings used previously
to characterize properties of noncrossing
digraphs and to solve maximal subgraphs
problems. The regular restriction with a
tight bound is shown to capture the Uni-
versal Dependencies v2.4 treebanks in lin-
guistics.

1 Introduction
Transition systems have been a widely used
mechanism in language understanding, cog-
nitive modelling of natural language process-
ing and syntactic and semantic parsing of
sentences. The combination of high parsing
speed of transition systems with the accu-
racy of the attached statistical models have
paved the way for practical applications of
parsing and similar data transformations en-
abled by these systems (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Zhang
and Nivre, 2011; Chen and Manning, 2014;
Dyer et al., 2015; Andor et al., 2016; Kiper-
wasser and Goldberg, 2016; Shi et al., 2017).
Transition systems may also be used to encode
dependency trees, DAGs and other ordered

digraphs, and to connect these to the classi-
cal formal language theory and to the prob-
lems of graph representation (Turán, 1984;
Farzan and Munro, 2013; Yli-Jyrä, 2019),
graph enumeration (Pólya, 1937; Conte et al.,
2018; Yli-Jyrä, 2019), integer sequence dis-
covery (Hoppe and Petrone, 2016; Yli-Jyrä
and Gómez-Rodríguez, 2017), maximum sub-
graph inference (Conte et al., 2019; Yli-Jyrä
and Gómez-Rodríguez, 2017), algebraic repre-
sentations of graph queries (Courcelle, 1990;
Ogawa, 2004; Yli-Jyrä and Gómez-Rodríguez,
2017), encoder-decoder parsing (Vinyals et al.,
2015; Strzyz et al., 2019) and parsing as
sequence labeling (Gómez-Rodríguez and Vi-
lares, 2018).

The study of transition systems in gen-
eral ranges from Turing complete transi-
tion systems (Woods, 1970; Goldin et al.,
2004; Thomas, 2002) to well-understood tran-
sition systems that build projective depen-
dency structures, context-free parse trees and
noncrossing graphs (Nivre, 2003, 2004; Gold-
berg and Elhadad, 2010; Kuhlmann et al.,
2011; Sagae and Tsujii, 2008; Honnibal and
Johnson, 2015). The need to model non-
local dependencies and crossing edges in parses
have motivated the study of transition sys-
tems that balance the computational com-
plexity and the coverage of the possible out-
puts. Many of these systems are exten-
sions of stack-based transition systems (At-
tardi, 2006; Nivre, 2009; Gómez-Rodríguez
and Nivre, 2013; de Lhoneux et al., 2017; Qi
and Manning, 2017; Gómez-Rodríguez et al.,
2018) but there are also some proposals for
transition systems that are based, solely or ad-
ditionally, on some other memory model, such
as a shack, a list, registers, a set, or a cache
(Kornai and Tuza, 1992; Covington, 2000;

119

Choi and McCallum, 2013; Pitler and McDon-
ald, 2015; Fernández-González and Gómez-
Rodríguez, 2018; Gildea et al., 2018; Vilares
and Gómez-Rodríguez, 2018; Coavoux and Co-
hen, 2019).

In this paper, we present a transition sys-
tem that implements an efficient, invertible
function between its action sequences and ar-
bitrary ordered digraphs. The action se-
quences of the system can also viewed as
strings of balanced brackets, constituting for-
mal languages that have elegant Chomsky-
Schützenberger representations and many de-
sirable characteristics of input-driven lan-
guages. The transition-based transformation
between the relational and sequential repre-
sentations of digraphs opens a possibility to
apply classical formal language theory of sub-
sets of free monoids to the classes of digraphs.

Our transition system takes advantage of a
new kind of decomposition of a digraph: the
rope decomposition views the underlying graph
as a union of subgraphs what we call ropes.
The longest edge of a rope shares exactly one
endpoint with each of the other edges in it.

The theoretical notions of rope decomposi-
tions and the new transition system are intro-
duced in Sections 3-4. The action sequences
of the transition system are related to formal
languages in Sections 5-6. Sections 7-8 con-
tain corpus-based empirical evaluation and a
discussion that argues that the developed en-
coding for digraphs contributes to the work in
some related and important research areas in
graph theory and computer science.

2 Basic Definitions

Denote the empty string with ϵ. Denote trans-
pose of a binary relation X as XT . Define the
composition of two binary relations X,Y as
X ◦ Y = {(x, z) | (x, y) ∈ X, (y, z) ∈ Y }.
Abbreviate an assignment S ← S ∪ T as
S

∪← T . Let Vn denote the finite set of integers
{1, ..., n}. Let the parameter d ∈ {<,>,<>}
indicate the choice between leftward, right-
ward and bidirectional orientation of arcs in
actions that produce these arcs.

A (finite ordered) graph is a pair (Vn, E)
where Vn is a finite set of ordered vertices
and E ⊆ {(u, v) ∈ Vn × Vn | u < v} is
a set of edges. For each edge (i, j) ∈ E,

we call i the left index and j the right in-
dex of the edge. A (finite ordered) digraph
is a pair (Vn, A) where Vn is a set of ver-
tices and A ⊆ {(u, v) ∈ Vn × Vn | u ̸= v}
is a set of arcs. The underlying graph of a
digraph (Vn, A) is the graph (Vn, EA), where
EA = {(i, j) | (i, j) ∈ A ∪AT , i < j}.

3 New Notions

3.1 Rope Cover
Definition 3.1. Let (Vn, E) be an ordered
graph. In this graph, edge (h, k), where h < k,
is a (properly-longer shared-endpoint) covering
edge for a shorter edge (i, j) if either h = i and
i < j < k, or j = k and h < i < j. Denote
this situation by (h, k) : (i, j).
Definition 3.2. A subset R ⊆ E is a rope
cover of the graph (Vn, E) if, for every edge
e ∈ E\R, there is an edge c ∈ R such that c : e.
Moreover, R is a proper rope cover (PRC) if is
there is no edges c1, c2 ∈ R s.t. c1 : c2.
Proposition 3.1. Any element in a PRC can
be identified by specifying either its left index
or its right index.
Proposition 3.2. Every graph has a PRC.
Theorem 3.3. The PRC is unique.

Proof. Let (Vn, E) be an arbitrary graph
and let R,R′ ⊆ E be two PRCs of the
graph. Assuming that R ̸= R′ and that
there is (x0, y0) ∈ R\R′, we show, by in-
duction, that there is an infinite sequence
of distinct edges (x0, y0), (x2, y2), (x4, y4), ... ∈
R\R′ and (x1, y1), (x3, y3), (x5, y5), ... ∈ R′\R
where (xi+1, yi+1) : (xi, yi) for every i ≥
0. To prove the required induction steps,
there is, by the definition of a PRC, a cov-
ering edge (xi+1, yi+1) in R′\R for every edge
(xi, yi) ∈ R\R′, and there is a covering edge
(xi+1, yi+1) ∈ R\R′ for every edge (xi, yi) ∈
R′\R. Such an infinite sequence of distinct
edges requires E to be infinite. By contradic-
tion, the PRC of the graph is unique.

Definition 3.3. For graph (Vn, E) with a
PRC R, the rope-thickness of a vertex i ∈ Vn−1

is the number of edges (h, j) ∈ R satisfying
h ≤ i < j. The rope-thickness of the graph is
the maximum over the rope-thicknesses of all
vertices i ∈ Vn−1 in the graph.

120

Lemma 3.4. For any graph of n vertices, its
PRC is constructed in O(n3).

Proof. Let (Vn, E) be a graph. To construct
the PRC, start with R0 = ∅ and E0 = E.
Given Ri and Ei, i ≥ 0, construct Ri+1 as
the set all edges in Ei that do not have a cov-
ering edge in Ei, and Ei+1 as the set of all
edges in Ei that do not have a covering edge
in Ri+1. Each such iteration is computed in
O(n2). Clearly, Ei+1 ⊊ Ei unless Ei = ∅, and
E⌊n/2⌋ = ∅. The PRC of the graph is the set
R = R1∪R2∪ ...∪R⌊n/2⌋, and it is constructed
in O(n3) time.

Corollary 3.5. The rope thickness of a graph
can be computed in cubic time.

Example (4) is a graph ([6], {(1, 6), (1, 5),
(2, 5), (3, 5), (4, 5)}) for which we obtain sets

R0 = {} E0 = E (1)
R1 = {(1, 6)} E1 = {(2, 5), (3, 5), (4, 5)} (2)
R2 = {(2, 5)} E2 = {} (3)

1 2 3 4 5 6

(4)

Convention 3.4 (“Left Index”). We will
sometimes refer to the edges in a PRC by their
left indices (see Proposition 3.1).
Convention 3.5 (“Indirect Edges”).
When an edge (i, j) has a covering edge (h, j),
h < i < j, we refer to the edge (i, j) indirectly,
via the pair (i, h) where h is the left index
of the covering edge.

The PRC of the graph (4) comprises the
edges {(1, 6), (2, 5)}, while the remaining edges
are covered by these. Edge (1, 5) is a usual
edge, and there are indirect edges, (3, 2)
and (4, 2), that we draw under the vertices.
The rope thickness of vertices 2 – 4 is two,
which is also the maximum for the whole
graph.

3.2 Ropes
Definition 3.6. An ordered graph (Vn, E) is
called a rope if n = 1 or the PRC of the graph
is {(1, n)}. This is complete if E = {(i, n) |
1 ≤ i < n} ∪ {(1, j) | 1 < j ≤ n}.

Ropes can be used in algorithms that con-
struct graphs while processing vertices. Ex-
ample (5) shows a digraph whose underly-
ing graph is a complete rope. Some of its
edges would cross one another if the edges were
drawn above a line containing the vertices.

1 2 3 4 5 (5)

Two-way algorithms can build a complete
rope in two passes with a vertex counter and
one memory unit that contains a reference to
one index of the covering edge. After memoriz-
ing the left index of the covering edge to vari-
able x, such an algorithm processes vertices 2
to 5 in Example (5) and builds edges (x, 2),
(x, 3), (x, 4) and (x, 5). During the backward
pass over the vertices, the algorithm saves the
right index of the covering edge to variable x
and builds edges (4, x), (3, x), and (2, x).

One-way algorithms process each vertex
only once as their output can represent the
edges (i, n), 2 ≤ i ≤ n − 1, in Example (5)
indirectly, by a reference to the left index of
the respective covering edge. In the output,
the edge (2, 5) is represented as an indirect
edge (2, 1) where 1 identifies the left in-
dex of the covering edge (1, 5). After process-
ing the vertices, the composition of (2, 1) and
(1, 5) is computed to obtain the actual edge
(2, 5).

3.3 Rope Assignment
Theorem 3.6. There are graphs where an
edge has two distinct covering edges in the
PRC.

Proof. The PRC of the graph of Example (6)
is {(1, 3), (2, 4)}.

1 2 3 4

(6)

The edge (2, 3) is covered by the edge (1, 3)
with which it shares the right index, and by
the edge (2, 4) with which it shares the left
index.

When an edge has two covering edges, we
need a consistent policy for treating them. In
(6), we can assign the edge (2, 3) to either of
the covering edges (1, 3), (2, 4), or both.

121

Convention 3.7 (“Earliest”). We adopt a
convention according to which the ambiguity
between two possible covering edges is resolved
by assigning the edge to the earliest available
covering edge.

By Convention 3.7, the arc (2, 3) in Example
(6) will be assigned to the Earliest covering
edge (1, 3), which can be identified by its left
index 1, by Convention 3.4. The covered arc
(2, 3) is thus represented as an indirect edge
(2, 1) by Convention 3.5.

3.4 Rope Decomposition
This section introduces a new representation
for digraphs. The idea is to start from the
PRC of the underlying graph, and then assign
the remaining arcs to covering edges.
Definition 3.8. A rope decomposition of
an (ordered) digraph (Vn, A) is a tuple
(Vn, R, A

<
, A

>
, I

<
, I

>
) satisfying the following

conditions:

1. edges R ⊆ EA constitute a PRC of the
underlying graph (Vn, EA),

2. A
<
⊆ {(i, j)∈AT |(i, k)∈R, i<j≤k} and

A
>
⊆ {(i, j)∈A|(i, k)∈R, i<j≤k} are,

respectively, left and right arcs whose
left index coincides with the left index of
the covering edge,

3. I
<
⊆{(i, h)|(i, j)∈AT , (h, j)∈R, h<i<j}

and I
>
⊆{(i, h)|(i, j)∈A, (h, j)∈R, h<i<j}

are, respectively, indirect representations
for arcs whose right index coincides
with the respective covering edge but is
represented indirectly, via the left index
of the respective covering edge.

4. The four sets of arcs represent together
the original set of arcs: A = A

<

T ∪ (I
<
◦

R)T ∪ A
>
∪ (I

>
◦R).

Lemma 3.7. Under the “Earliest” conven-
tion, the relation between digraphs and rope
decompositions is a bijection.

Proof. (⇒): Let G = (Vn, A) be a digraph
and G′ = (Vn, EA) its underlying graph. By
Theorem 3.3, G′ has a unique PRC R ⊆ EA.
By the “Earliest” convention, we choose the

earliest available covering edge for each edge
and first construct the sets of indirect arcs
I
<
= {(i, h) | (i, j)∈AT , (h, j)∈R, h<i<j} and

I
>
= {(i, h) | (i, j)∈A, (h, j)∈R, h<i<j}. Af-

ter this, we construct the sets of arcs whose left
index coincides with the covering edges: A

<
=

{(i, j)∈AT \(I
<
◦R)|(i, k)∈R, i<j≤k} and A

>
⊆

{(i, j)∈(A\(I
>
◦R) | (i, k)∈R, i<j≤k}.

(⇐): Let (G = Vn, R, A
<
, A

>
, I

<
, I

>
) be a rope

decomposition. We obtain the corresponding
graph as (Vn, A

<

T ∪ (I
<
◦R)T ∪A

>
∪ (I

>
◦R)).

4 A New Transition System
By Lemma 3.7, there is a bijection between
(a class of) rope decompositions and digraphs.
We complement this result by relating each
rope decomposition bijectively to a sequence
of actions. The actions are controlled by a
transition system.

Our transition system has a buffer β ∈ N,
a main stack σ ∈ N∗ and an auxiliary stack
τ ∈ N∗, each containing vertex indices. The
tuple (σ, τ, β) of these three structures forms
the core of the configurations between which
the transition system moves. As an input, the
system takes a sequence of actions that tell
how to build a rope decomposition in an incre-
mental manner. The possible types of actions
of the transition system are listed in Table 1.

Initially, both the stacks are empty and the
buffer β consists of the list of positive integers.
The final configurations of the system con-
sists of all those configurations (ϵ, ϵ, β) where
both stacks are empty, and β contains a suf-
fix [n, n + 1, ...] of the list of positive inte-
gers. When the system reaches a final con-
figuration, it has produced a relational struc-
ture (Vn, R, A

<
, A

>
, I

<
, I

>
) of a rope decomposi-

tion. By doing so, the transition system maps
the input sequence of actions to a rope decom-
position that represents a digraph. It is not
too difficult to define the inverse of this func-
tion, but we suppress the details in the interest
of space.

4.1 Main Actions
The most important actions of the transition
system create the set of edges in the PRC R.
By a shift (sh) action, the system removes a

122

Table 1: Transition system for rope decompositions.

action transition between configurations effect on the decomposition
sh σ, ϵ, iβ, [_,_,_] ⇒ σi, ϵ, β, [−ins,− re,− pass

0
]

nx σ, ϵ, iβ, [_,_,_] ⇒ σ , ϵ, β, [−ins,− re,− pass
0

]

re
d

σi, ϵ, jβ, [−ins,− re,_] ⇒ σ , ϵ, jβ, [−ins,+ re,− pass
0

] R
∪← {(i, j)}, A

d

∪← {(i, j)}

pass
0

σi, τ, jβ, [−ins, α re,_] ⇒ σ, iτ, jβ, [−ins, α re,+ pass
0

]

pass
d

σi, τ, jβ, [−ins,_,_] ⇒ σ, iτ, jβ, [−ins,+ re,− pass
0

] A
d

∪← {(i, j)}

ins
0

σ, iτ, jβ, [_,_,− pass
0

] ⇒ σi, τ, jβ, [+ins,+ re,− pass
0

]

ins
d

σ, iτ, jβ, [_,_,_] ⇒ σi, τ, jβ, [+ins,+ re,− pass
0

] I
d

∪← {(j, i)}

vertex index i from the front of the buffer and
places it to the top of the stack in order to
prepare for a future situation where the index
i is the left index of an edge in the PRC, i.e.,
∃j.R(i, j). When the index j becomes avail-
able in the front of the buffer, the system cre-
ates the edge (i, j) ∈ R by a reduce (re) action
and removes the index i from the stack. The
specifier d ∈ {<,>,<>} of the action tells
whether the corresponding arc (i, j) is to be
added to A

<
, A

>
or both. Only one reduce ac-

tion is allowed in a row. By a next (nx) action,
the system removes an index i from the front
of the buffer to secure the situation where no
covering edge has vertex i as its left index, i.e.,
¬∃j.R(i, j).

Example (7) is a digraph whose underlying
graph is a complete graph with an edge be-
tween every pair of vertices. The PRC of this
graph is {(1, 7), (2, 6), (3, 5)}.

1 2 3 4 5 6 7 (7)

The PRC R, and the corresponding arcs in A
<

and A
>

of the rope decomposition of this di-
graph are created by the action sequence:

(ϵ, ϵ, [1..])
sh⇒ ([1], ϵ, [2..])

sh⇒ ([1, 2], ϵ, [3..])
sh⇒

([1..3], ϵ, [4..])
nx⇒ ([1..3], ϵ, [5..])

re
>
⇒ ([1, 2], ϵ, [5..])

nx⇒

([1, 2], ϵ, [6..])

re
>
⇒ ([1], ϵ, [6..])

nx⇒ ([1], ϵ, [7..])

re
>
⇒ (ϵ, ϵ, [7..])

(8)

The main actions involved in this example do
not use the auxiliary stack. The edges in R
and the corresponding arcs are created by the
reduce actions as follows:
configuration action effect
([1..3], ϵ, [5..]) re

>
R

∪← {(3, 5)}, A
>

∪← {(3, 5)}

([1, 2], ϵ, [6..]) re
>

R
∪← {(2, 6)}, A

>

∪← {(2, 6)}

([1], ϵ, [7..]) re
>

R
∪← {(1, 7)}, A

>

∪← {(1, 7)}

(9)

4.2 Intermediate Actions
In order to create arcs whose underlying edges
do not belong to the PRC, some additional,
intermediate actions are needed. Such inter-
mediate actions allow the front of the buffer to
form arcs with non-top elements of the main
stack.

For instance, the first visit to configuration
([1..3], ϵ, [4..]) allows actions that move the el-
ements of the main stack temporarily to the
auxiliary stack before restoring the original
configuration:

... ⇒ ([1..3], ϵ, [4..])

pass
>
⇒ ([1, 2], [3], [4..])

pass
>
⇒ ([1], [2, 3], [4..])

pass
>
⇒ (ϵ, [1..3], [4..])

ins
>
⇒ ([1], [2, 3], [4..])

ins
>
⇒ ([1, 2], [3], [4..])

ins
>
⇒ ([1..3], ϵ, [4..]) ⇒ ... (10)

The pass (pass) and insert (ins) actions create
arcs whose underlying edges do not belong to
the PRC:

configuration action effect
([1..3], ϵ, [4..]) pass

>
A
>

∪← {(3, 4)}

([1, 2], [3], [4..]) pass
>

A
>

∪← {(2, 4)}

([1], [2, 3], [4..]) pass
>

A
>

∪← {(1, 4)}

(ϵ, [1..3], [4..]) ins
>

I
>

∪← {(4, 1)}

([1], [2, 3], [4..]) ins
>

I
>

∪← {(4, 2)}

([1, 2], [3], [4..]) ins
>

I
>

∪← {(4, 3)}

(11)

To prevent multiple re-entry to the same con-
figuration and repeating the intermediate ac-
tions, the detailed configurations of the tran-
sition system include control variables that re-
strict the available actions in different phases
of the transition system. As the insert actions
set +ins, the reduce and pass astions become
blocked until the next shift/next action.

Some intermediate actions do not create
arcs. These intermediate actions have an im-
portant role in allowing other actions to access

123

the non-top elements of the main stack. Yet
the sequence pass

0
ins
0

is blocked by the con-
trol variable pass

0
as a useless sequence.

A reduce action can be immediately pre-
ceded by several pass

0
actions. Example

(6) has a PRC {(1, 3), (2, 4)} that is created
through a sequence that involves intermediate
actions. The preceding pass and the following
insert actions allow the first reduce action to
get access to a non-top element of the main
stack and to remove it from the stack:

(ϵ, ϵ, [1..])
sh⇒ ([1], ϵ, [2..])

sh⇒ ([1, 2], ϵ, [3..])

pass
0
⇒

([1], [2], [3..])

re
>
⇒ (ϵ, [2], [3..])

ins
0
⇒ ([2], ϵ, [3..])

nx⇒

([2], ϵ, [4..])

re
>
⇒ (ϵ, ϵ, [4..])

(12)

The configuration ([1], ϵ, [2..]) allows a combi-
nation of a pass and insert actions. The insert
action puts, to I

<
, the pair (2, 1) representing

the arc (3, 2) in Example (6).

...
sh⇒ ([1], ϵ, [2..])

pass
0
⇒ (ϵ, [1], [2..])

ins
<
⇒ ([1], ϵ, [2..])

sh⇒ ... (13)

4.3 Correctness
Lemma 4.1. For every digraph, there is a
unique action sequence that creates the edges
of its PRC.

Proof sketch. By Proposition 3.1, no ver-
tex needs to start or finish more than one edge
in the PRC. The transition system allows to
start one covering edge per vertex with a shift
action and finish any previously started cover
edge with a reduce action. A crossing cover
edge can be finished by accessing the non-
topmost stack elements with pass

0
and ins

0

actions in their appropriate time.
Theorem 4.2. The transition system is able
to produce every possible rope decomposition,
capturing every digraph.

Proof sketch. By Lemma 4.1, we have a
way to create the PRC and the corresponding
arcs. The set of arcs is extended to represent
the rest of the arcs via pass and insert actions
that create the arcs that are properly covered
by the edges in the PRC.

5 Linear Encoding
The action sequences of the transition system
can be seen as linearisations for the digraphs.

In particular, the undirected graph in Exam-
ple (6) is encoded as the action sequence in
(14). To make the linearisation more conve-
nient for eyes, we replace actions with brackets
and other symbols in (15).

sh pass
0

ins
<>

sh pass
0

re
<>

ins
0

nx re
<>

(14)

[[•]
0

[
<>

[[•]
0

]]
<>

[
0

•]]
<>

(15)

Convention 5.1. By convention, the brack-
eting scheme renames the actions of the tran-
sition system as follows:

nx sh pass
0

pass
d

ins
0

ins
d

re
d

• [[•]
0

]
d

[
0

[
d

]]
d

(16)

The convention improves the readabil-
ity of action sequence and gives com-
pact action sequences: especially, the
digraph in Example (7) is encoded as string
[[•]

>
[
<
[[•]

>
]
>
[
<
[
<
[[•]

>
]
>
]
>
[
<
[
<
[
<

•]]
>
]
>
]
>
[
<
[
<

•]]
>
]
>
[
<

•]]
>

.

Example (17) demonstrates how the bracket(s)
now correspond almost iconically to the rep-
resented arcs.

[[•]
>
[
0
[[•]

0
]]
>
[
0
[[•]

0
]]
>
[
0
[[•]

0
]
>
[
0
[
0

•]
0
]]
>
[
0

•]]
> (17)

Convention 5.1 benefits us when we anal-
yse the formal, language theoretic properties
of such action sequences altough the encoding
is not otherwise meant for human inspection
and its direct manipulation by hand is prone
to errors. The convention borrows ideas from
Yli-Jyrä (2017) but differs from it in four im-
portant aspects:

1. The vertices are separated with a bullet
symbol (•) instead of curly brackets ({}).

2. The left brackets {[[,[,[
0
} match the

right brackets {]],],]
0
}.

3. Weak brackets may be stacked (like in
]]][[[) in order to deal with stacked
pass and insert actions.

4. A strong closing bracket may occur inside
a stack of weak brackets (like in]

0
]
0
]][[).

These changes are necessary to deal with cross-
ing arcs and the actions that operate on two
stacks.

124

5.1 Syntactic Properties
In order to analyse the formal properties of
the transition system, we need to understand
how the actions, or the corresponding brack-
ets, form strings that correspond to ordered
graphs in a bijective manner. We induce the
following principles:

1. Each vertex corresponds to a sequence of
closing brackets followed by a sequence of
opening brackets.

2. Between “]]” and the closest preceding
“ • ”, there can be only “]

0
”-brackets.

This corresponds to the convention 3.7
that always chooses the “earliest” cov-
ering edge in the PRC of the underlying
graph. We do not need “]”-brackets to
produce arcs as we have an opportunity
to produce same arcs with “[”-brackets
earlier.

3. The unnecessary pair of pass and insert
actions, marked with bracket substring
“]

0
[
0
” do not occur in the strings.

4. The strong opening bracket “[[” always
occurs right before the vertex boundary
“ • ”.

5. The maximum number of brackets per
vertex is n− 1.

6. Left brackets BL = {[[,[
0
,[
d
} match right

brackets BR = {]]
d
,]

0
,]
d
}.

7. The rope thickness of the (di)graph is the
maximum number of momentarily open
brackets in its encoding.

According to the principles 1-4, the bracket
substrings that correspond to different vertices
constitute a context-free language W that is
generated by the grammar GW :

S → T ? | T ? [[T ? → T | ϵ
R′ →]]

<
|]]

>
|]]

<>
L′ → L | [

0

R →]
<
|]

>
|]

<>
L → [

<
| [

>
| [

<>

T → R′ T ? | R T ? L′ |]
0
T ? L |]

0
T[

0

(18)

Lemma 5.1. The action sequences that con-
form to the seven principles allow only one way
to represent each ordered digraph.

Proof. The strong brackets are crucial for en-
coding all arcs of the digraph and the PRC of
its underlying graph in particular. Every di-
graph (Vn, A) has a unique PRC, and, due to
the principles 1-4, it is not possible to build the
same PRC with the correct arc orientations
in two different ways. By the second princi-
ple, all non-PRC arcs are assigned to a unique
covering edge. There is thus only one moment
when the right combination of indices is avail-
able in the configuration for constructing each
arc, and there is only one action sequence that
can construct any given digraph.

We also observe that string concatenation of
two action sequences gives an action sequence
that produces a digraph concatenation of two
ordered digraphs with one shared vertex.
Proposition 5.2. The encoding from digraphs
to strings is a mapping that preserves the
structure of the digraph concatenation monoid
and sends it the structure of a string concate-
nation monoid.

6 Formal Language Theory
Chomsky-Schützenberger (CS) parsing (Yli-
Jyrä, 2005, 2012; Hulden, 2009; Yli-Jyrä
and Gómez-Rodríguez, 2017; Ruprecht and
Denkinger, 2019) combines a particular kind
of language representations with weighted au-
tomata techniques. A prototypical CS style
language representation h(L ∩ D) involves a
homomorphic mapping (h) applied to an inter-
section of a a regular language component L
and a Dyck language D. Yli-Jyrä and Gómez-
Rodríguez (2017) used this kind of language
representations to show that their encoding
for the noncrossing digraphs (LNC-DIGRAPH)
is a context-free language and admits an ef-
ficient algorithm for finding maximal con-
strained subdigraphs in a weighted complete
digraph.

This section gives a CS style representa-
tion for the language of all encoded digraphs
(LDIGRAPH) by relaxing the requirement that
the L component of the language representa-
tion is a regular language. The represented
language is then not context-free, but the
representation is loosely speaking of “the CS
style”. The similarity becomes more obvious
when we derive a context-free approximation
of it.

125

Lemma 6.1. There is a CS style representa-
tion for the language LDIGRAPH.

Proof. We start by defining a Dyck language
D that checks for balanced bracketing. Let
the internal alphabet of the representation be
Σ = {{, }}∪{[(l,r),](l,r) | l ∈ BL, r ∈ BR}. Let
D be the language generated by the grammar

S → ϵ | SS | {S} | [(l,r)S](l,r) (19)

where l ∈ BL and r ∈ BR. Let h : Σ∗ →
({ • }∪BL∪BR)

∗ be a homomorphism defined
in such a way that, for all l ∈ BL, r ∈ BR,

h(ab) = h(a)h(b) h(ϵ) = ϵ

h([(l,r)) = l h({) = ϵ

h(](l,r)) = r h(}) = • . (20)

Instead of the usual regular component of CS
representations, we use a marked concatena-
tion closure of a context-free language: let
L be the context-free language W (• W)n−1,
whose inverse homomorphims h−1(L) is also a
marked concatenation closure of a context-free
language.

The set of encoded digraphs is now given as
LDIGRAPH = h(h−1(L) ∩ D) = L ∩ h(D).

Lemma 6.2. The subset of the encoded di-
graphs LDIGRAPH, where the number of brack-
ets per vertex is bounded by k, is context-free.

Proof. We start from the CS style representa-
tion (the proof of lemma 6.1) for LDIGRAPH
and replace the context-free language L, with
a regular approximation L<k = W<k(• W<k)

∗

where W<k is a finite subset of W restricted
to contain at most k nested brackets in the
strings. This gives a more prototypical CS rep-
resention LDIGRAPH,k = h(h−1(L<k) ∩ D) =
L<k ∩h(D), which yields a context-free subset
of LDIGRAPH.

Lemma 6.3. The subset of encoded graphs
LDIGRAPH, where the rope thickness of the en-
coded digraphs is bounded by t, is regular.

Proof. As the rope thickness is bounded by t,
the number of brackets per vertex is bounded
by 2t. Thus, we start from the CS style rep-
resentation (the proof of Lemma 6.2) for en-
coded graphs where the number of brackets
per vertex is bounded. By the bound t for

the rope thickness, we replace the context-free
language D with a regular subset Dt ⊂ D
that can contain t levels of nested brackets.
The 2t, t-bounded set of encoded graphs is
given by LDIGRAPH,2t,t = h(h−1(L<2t)∩Dt) =
L<2t ∩h(Dt). By the closure properties of reg-
ular languages, LDIGRAPH,2t,t is regular.

7 Evidence for Linguistic Relevance

To assess the linguistic relevance of the cur-
rently presented encoding, we carried out
a small experiment where we computed the
rope-thickness of dependency trees in the Uni-
versal Dependencies v 2.4 treebanks (Nivre
et al., 2019). The compacted results are pre-
sented in Table 2. The results indicate that
a very high proportion of the observations is
captured when rope-thickness is 4 or higher.

According to our preliminary experiments
on graph banks, a very similar distribution of
rope-thickness is observed in more general an-
notation graphs.

8 Discussion

Among the earliest encoding schemes for
graphs are the Prüfer sequences for labeled
trees (Prüfer, 1918) that have been extened to
DAGs (Steinsky, 2003). More recently, Turán
(1984) introduced the problem of graph rep-
resentation given an adjacency matrix. There
are now some efficient representations for un-
labled and labeled graphs (Turán, 1984; Naor,
1990; Farzan and Munro, 2013). Our repre-
sentation for digraphs is also efficient: it has a
cubic-time encoder and a linear-time decoder.

The currently presented encoding for di-
graphs is a generalisation of an earlier rep-
resentation (Yli-Jyrä, 2017, 2019) that is it-
self an optimized alternative for the balanced
bracketing proposed for weighted dependency
parsing in (Yli-Jyrä, 2012). Several edge-
weighted parsing algorithms have been pre-
sented earlier (Dixon et al., 1992; Charniak
et al., 1998; Sasano et al., 2000; Kuhlmann and
Jonsson, 2015), but these newer methods ap-
ply to up to 50 families of dependency graphs
and the currently presented encoding is ex-
pected to help in their generalization. It would
be also interesting to study how rope graphs
relate to 1-endpoint crossing graphs (Pitler
et al., 2013; Kurtz and Kuhlmann, 2017).

126

language trees rope-thickness 1 2 3 4 5 6 7 8
Arabic 28,402 4.9% 20.5% 63.5% 94.0% 99.64% 99.986% 100.000% 100.000%
Czech 127,507 13.3% 48.3% 89.3% 98.8% 99.91% 99.992% 100.000% 100.000%
Dutch 20,735 21.3% 63.4% 92.9% 98.9% 99.92% 99.986% 100.000% 100.000%
English 34,601 15.6% 54.9% 92.3% 99.3% 99.98% 99.997% 100.000% 100.000%
Finnish 34,641 37.0% 78.7% 96.8% 99.6% 99.97% 99.994% 100.000% 100.000%
German 191,757 10.1% 49.2% 90.5% 99.2% 99.96% 99.997% 100.000% 100.000%
Hindi 19,545 2.9% 44.4% 85.3% 98.3% 99.87% 99.980% 100.000% 100.000%
Italian 34,057 5.6% 49.9% 90.3% 98.8% 99.89% 99.997% 100.000% 100.000%
Korean 34,702 15.5% 65.6% 94.7% 99.5% 99.95% 99.994% 100.000% 100.000%
Latvian 12,558 12.7% 50.0% 89.8% 98.8% 99.90% 99.992% 99.992% 100.000%
Russian 87,377 15.0% 55.5% 90.7% 98.9% 99.91% 99.994% 99.999% 100.000%
Chinese 18,628 46.1% 73.7% 91.9% 98.6% 99.89% 99.989% 100.000% 100.000%
all 83 languages 1,232,262 15.1% 54.8% 90.5% 99.0% 99.93% 99.995% 100.000% 100.000%

Table 2: The cumulative coverage of bounded rope-thickness in the UD v2.4 dataset from which we
purged the trees containing ellipsis.

The languages of encoded graphs have ap-
plications to constrained graph enumeration
problems. Hoppe and Petrone (Hoppe and
Petrone, 2016) have exhaustively enumerated
all simple, connected graphs of a finite order
and computed a selection of invariants over
the sets in order to discover and add 141 new
integer sequences to the Online Encyclope-
dia of Integer Sequences (OEIS). Our previ-
ous encoding scheme (Yli-Jyrä and Gómez-
Rodríguez, 2017) gave context-free characteri-
sations for some graph properties. This led to
the discovery of dozens of known and new in-
teger sequences by graph enumeration. These
new computational methods complement the
research that spans from the “Abzählsatz” of
(Pólya, 1937) to more recent work on graph
enumeration (Wormald, 1979; Mckay, 1983;
Kapoor and Ramesh, 2000; Acuña et al., 2012;
Conte et al., 2018; Equi et al., 2019).

The language LDIGRAPH is not only context-
sensitive but even an indexed language (Aho,
1968): it is possible to construct an in-
dexed grammar that generates the same set
of strings. However, the existence of a sim-
ple transition system, a finite representation,
and a finite indexed grammar for the encoded
digraphs should not be confused with condi-
tion under which digraphs themselves become
finitely generated. Ogawa (2004) has pre-
sented a complete, infinite set of generators for
the graphs. We also need an infinite set of gen-
erators for the language LDIGRAPH, because
the the paths that take the transition system
from one final configuration to another final
configuration constitute an infinite set of code
words over which the encoded digraphs are
generated. This set remains infinite even for
digraphs with bounded rope thickness, but the
context-free and regular subsets of LDIGRAPH

may have some other ways to motivate finite
algebraic axiomatisations.

9 Conclusion
This paper contributes to the research on
graph representations (Turán, 1984) by de-
veloping a linear-time decodable encoding
for arbitrary labeled digraphs that we pre-
ferred to call ordered digraphs. The partic-
ular design of our linear encoding is moti-
vated by the success of similar representations
(Yli-Jyrä, 2005, 2012; Yli-Jyrä and Gómez-
Rodríguez, 2017) in the characterisations of
several families of noncrossing digraphs and
by the effectiveness of the recently improved
representation (Yli-Jyrä, 2017, 2019). Evi-
dently, both kinds of graph representations
have potential applications in graph enumer-
ation (Yli-Jyrä and Gómez-Rodríguez, 2017)
and weighted Chomsky-Schützenberger pars-
ing (Yli-Jyrä, 2005, 2012; Hulden, 2009; Yli-
Jyrä and Gómez-Rodríguez, 2017; Ruprecht
and Denkinger, 2019).

More specifically, the paper contributes a
general transition system that decodes arbi-
trary digraphs from linear action sequences.
Crucial notions – the proper rope cover (PRC)
and the related rope decomposition – are de-
fined and used in this transition system. The
first PRC-based measure for the complexity
of the graphs is introduced. Context-free and
regular approximations of the encoded graphs
are defined and shown to contain the depen-
dency annotations of the UD 2.4 treebanks.

127

References
Vicente Acuña, Etienne Birmelé, Ludovic Cot-

tret, Pierluigi Crescenzi, Fabien Jourdan, Vin-
cent Lacroix, Alberto Marchetti-Spaccamela,
Andrea Marino, Paulo Vieira Milreu, Marie-
France Sagot, and Leen Stougie. 2012. Telling
stories: Enumerating maximal directed acyclic
graphs with a constrained set of sources and tar-
gets. Theoretical Computer Science, 457:1 – 9.

Alfred V. Aho. 1968. Indexed grammars – an ex-
tension of context-free grammars. Journal of the
ACM, 15(4):647–671.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Globally
normalized transition-based neural networks. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2442–2452, Berlin,
Germany. Association for Computational Lin-
guistics.

Giuseppe Attardi. 2006. Experiments with a mul-
tilanguage non-projective dependency parser. In
Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning, CoNLL-X
’06, pages 166–170. Association for Computa-
tional Linguistics.

Jill Burstein, Christy Doran, and Thamar Solorio,
editors. 2019. Proceedings of the 2019 Con-
ference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers). Association
for Computational Linguistics.

Eugene Charniak, Sharon Goldwater, and Mark
Johnson. 1998. Edge-based best-first chart pars-
ing. In Sixth Workshop on Very Large Corpora,
VLC@COLING/ACL 1998, Montreal, Quebec,
Canada, August 15-16, 1998.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neu-
ral networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, Doha,
Qatar. Association for Computational Linguis-
tics.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with se-
lectional branching. In Proceedings of the 51st
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1052–1062, Sofia, Bulgaria. Association
for Computational Linguistics.

Maximin Coavoux and Shay B. Cohen. 2019. Dis-
continuous constituency parsing with a stack-
free transition system and a dynamic oracle.
CoRR, abs/1904.00615.

Alessio Conte, Roberto Grossi, Andrea Marino,
and Romeo Rizzi. 2018. Efficient enumeration
of graph orientations with sources. Discrete Ap-
plied Mathematics, 246:22 – 37.

Alessio Conte, Roberto Grossi, Andrea Marino,
and Luca Versari. 2019. Listing maximal sub-
graphs satisfying strongly accessible proper-
ties. SIAM Journal on Discrete Mathematics,
33(2):587–613.

Bruno Courcelle. 1990. The monadic second-
order logic of graphs. I. recognizable sets of
finite graphs. Information and Computation,
85(1):12–75.

Michael A. Covington. 2000. A fundamental algo-
rithm for dependency parsing. In In Proceedings
of the 39th Annual ACM Southeast Conference,
pages 95–102, Athens, GA. Association for Com-
puting Machinery.

Brandon Dixon, Monika Rauch, and Robert Endre
Tarjan. 1992. Verification and sensitivity anal-
ysis of minimum spanning trees in linear time.
SIAM Journal on Computing, 21(6):1184–1192.

Chris Dyer, Miguel Ballesteros, Wang Ling,
Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependency parsing with stack
long short-term memory. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 334–
343, Beijing, China. Association for Computa-
tional Linguistics.

Massimo Equi, Roberto Grossi, Veli Mäkinen, and
Alexandru I. Tomescu. 2019. On the complexity
of string matching for graphs. In 46th Interna-
tional Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece., volume 132 of LIPIcs, pages
55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Arash Farzan and J. Ian Munro. 2013. Succinct
encoding of arbitrary graphs. Theoretical Com-
puter Science, 513:38 – 52.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2018. Non-projective dependency
parsing with non-local transitions. In Proceed-
ings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 693–700,
New Orleans, Louisiana. Association for Com-
putational Linguistics.

Daniel Gildea, Giorgio Satta, and Xiaochang Peng.
2018. Cache transition systems for graph pars-
ing. Computational Linguistics, 44(1):85–118.

https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.023
https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.023
https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.023
https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.023
https://doi.org/10.1145/321479.321488
https://doi.org/10.1145/321479.321488
https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
http://dl.acm.org/citation.cfm?id=1596276.1596307
http://dl.acm.org/citation.cfm?id=1596276.1596307
https://aclweb.org/anthology/volumes/proceedings-of-the-2019-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-and-short-papers/
https://aclweb.org/anthology/volumes/proceedings-of-the-2019-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-and-short-papers/
https://aclweb.org/anthology/volumes/proceedings-of-the-2019-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-and-short-papers/
https://aclweb.org/anthology/volumes/proceedings-of-the-2019-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-and-short-papers/
https://aclweb.org/anthology/volumes/proceedings-of-the-2019-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-and-short-papers/
https://aclweb.org/anthology/volumes/proceedings-of-the-2019-conference-of-the-north-american-chapter-of-the-association-for-computational-linguistics-human-language-technologies-volume-1-long-and-short-papers/
https://aclanthology.info/papers/W98-1115/w98-1115
https://aclanthology.info/papers/W98-1115/w98-1115
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://www.aclweb.org/anthology/P13-1104
https://www.aclweb.org/anthology/P13-1104
http://arxiv.org/abs/1904.00615
http://arxiv.org/abs/1904.00615
http://arxiv.org/abs/1904.00615
https://doi.org/https://doi.org/10.1016/j.dam.2017.08.002
https://doi.org/https://doi.org/10.1016/j.dam.2017.08.002
https://doi.org/10.1137/17M1152206
https://doi.org/10.1137/17M1152206
https://doi.org/10.1137/17M1152206
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1137/0221070
https://doi.org/10.1137/0221070
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/https://doi.org/10.1016/j.tcs.2013.09.031
https://doi.org/https://doi.org/10.1016/j.tcs.2013.09.031
https://doi.org/10.18653/v1/N18-2109
https://doi.org/10.18653/v1/N18-2109
https://doi.org/10.1162/COLI_a_00308
https://doi.org/10.1162/COLI_a_00308

128

Yoav Goldberg and Michael Elhadad. 2010. An
efficient algorithm for easy-first non-directional
dependency parsing. In Human Language Tech-
nologies: The 2010 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, HLT ’10, pages 742–
750. Association for Computational Linguistics.

Dina Q. Goldin, Scott A. Smolka, Paul C. Attie,
and Elaine L. Sonderegger. 2004. Turing ma-
chines, transition systems, and interaction. In-
formation and Computation, 194(2):101 – 128.
Special Issue Commemorating the 50th Birth-
day Anniversary of Paris C. Kanellakis.

Carlos Gómez-Rodríguez and Joakim Nivre. 2013.
Divisible transition systems and multiplanar de-
pendency parsing. Computational Linguistics,
39(4):799–845.

Carlos Gómez-Rodríguez, Tianze Shi, and Lil-
lian Lee. 2018. Global transition-based non-
projective dependency parsing. In Proceed-
ings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume
1: Long Papers), pages 2664–2675, Melbourne,
Australia. Association for Computational Lin-
guistics.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brus-
sels, Belgium, October 31 - November 4, 2018,
pages 1314–1324. Association for Computational
Linguistics.

Matthew Honnibal and Mark Johnson. 2015. An
improved non-monotonic transition system for
dependency parsing. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 1373–1378, Lisbon,
Portugal. Association for Computational Lin-
guistics.

Travis Hoppe and Anna Petrone. 2016. Integer
sequence discovery from small graphs. Discrete
Appl. Math., 201(C):172–181.

Mans Hulden. 2009. Parsing CFGs and PCFGs
with a Chomsky-Schützenberger representation.
In Human Language Technology. Challenges for
Computer Science and Linguistics - 4th Lan-
guage and Technology Conference, LTC 2009,
Poznan, Poland, November 6-8, 2009, Revised
Selected Papers, volume 6562 of Lecture Notes
in Computer Science, pages 151–160. Springer.

S. Kapoor and H. Ramesh. 2000. An algorithm
for enumerating all spanning trees of a directed
graph. Algorithmica, 27(2):120–130.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing us-
ing bidirectional LSTM feature representations.

Transactions of the Association for Computa-
tional Linguistics, 4:313–327.

András Kornai and Zsolt Tuza. 1992. Narrowness,
pathwidth, and their application in natural lan-
guage processing. Discrete Applied Mathemat-
ics, 36(1):87–92.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and
Giorgio Satta. 2011. Dynamic program-
ming algorithms for transition-based depen-
dency parsers. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, pages 673–682. Asso-
ciation for Computational Linguistics.

Marco Kuhlmann and Peter Jonsson. 2015. Pars-
ing to noncrossing dependency graphs. TACL,
3:559–570.

Robin Kurtz and Marco Kuhlmann. 2017. Exploit-
ing structure in parsing to 1-endpoint-crossing
graphs. In Proceedings of the 15th International
Conference on Parsing Technologies, pages 78–
87, Pisa, Italy. Association for Computational
Linguistics.

Miryam de Lhoneux, Sara Stymne, and Joakim
Nivre. 2017. Arc-hybrid non-projective depen-
dency parsing with a static-dynamic oracle. In
Proceedings of the 15th International Conference
on Parsing Technologies, IWPT 2017, Pisa,
Italy, September 20-22, 2017, pages 99–104. As-
sociation for Computational Linguistics.

Brendan D. Mckay. 1983. Applications of a tech-
nique for labelled enumeration. Congressus Nu-
merantium, 40:207–221.

Moni Naor. 1990. Succinct representation of gen-
eral unlabeled graphs. Discrete Applied Mathe-
matics, 28(3):303 – 307.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of
the Eighth International Workshop on Parsing
Technologies (IWPT), pages 149–160.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Proceedings of the
Workshop on Incremental Parsing: Bringing
Engineering and Cognition Together, Increment-
Parsing ’04, pages 50–57. Association for Com-
putational Linguistics.

Joakim Nivre. 2009. Non-projective dependency
parsing in expected linear time. In Proceedings
of the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint
Conference on Natural Language Processing of
the AFNLP: Volume 1 - Volume 1, ACL ’09,
pages 351–359. Association for Computational
Linguistics.

http://dl.acm.org/citation.cfm?id=1857999.1858114
http://dl.acm.org/citation.cfm?id=1857999.1858114
http://dl.acm.org/citation.cfm?id=1857999.1858114
https://doi.org/https://doi.org/10.1016/j.ic.2004.07.002
https://doi.org/https://doi.org/10.1016/j.ic.2004.07.002
https://doi.org/10.1162/COLI_a_00150
https://doi.org/10.1162/COLI_a_00150
https://www.aclweb.org/anthology/P18-1248
https://www.aclweb.org/anthology/P18-1248
https://aclanthology.info/papers/D18-1162/d18-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.18653/v1/D15-1162
https://doi.org/10.1016/j.dam.2015.07.017
https://doi.org/10.1016/j.dam.2015.07.017
https://doi.org/10.1007/978-3-642-20095-3_14
https://doi.org/10.1007/978-3-642-20095-3_14
https://doi.org/10.1007/s004530010008
https://doi.org/10.1007/s004530010008
https://doi.org/10.1007/s004530010008
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1016/0166-218X(92)90208-R
https://doi.org/10.1016/0166-218X(92)90208-R
https://doi.org/10.1016/0166-218X(92)90208-R
http://dl.acm.org/citation.cfm?id=2002472.2002558
http://dl.acm.org/citation.cfm?id=2002472.2002558
http://dl.acm.org/citation.cfm?id=2002472.2002558
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/709
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/709
https://www.aclweb.org/anthology/W17-6312
https://www.aclweb.org/anthology/W17-6312
https://www.aclweb.org/anthology/W17-6312
https://aclanthology.info/papers/W17-6314/w17-6314
https://aclanthology.info/papers/W17-6314/w17-6314
https://doi.org/https://doi.org/10.1016/0166-218X(90)90011-Z
https://doi.org/https://doi.org/10.1016/0166-218X(90)90011-Z
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W03-3017
http://dl.acm.org/citation.cfm?id=1613148.1613156
http://dl.acm.org/citation.cfm?id=1613148.1613156
http://dl.acm.org/citation.cfm?id=1687878.1687929
http://dl.acm.org/citation.cfm?id=1687878.1687929

129

Joakim Nivre, Mitchell Abrams, Željko Agić,
Lars Ahrenberg, Gabrielė Aleksandravičiūtė,
Lene Antonsen, Katya Aplonova, Maria Je-
sus Aranzabe, Gashaw Arutie, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Bad-
maeva, Miguel Ballesteros, Esha Banerjee, Se-
bastian Bank, Verginica Barbu Mititelu, Vic-
toria Basmov, John Bauer, Sandra Bellato,
Kepa Bengoetxea, Yevgeni Berzak, Irshad Ah-
mad Bhat, Riyaz Ahmad Bhat, Erica Bi-
agetti, Eckhard Bick, Agnė Bielinskienė, Ro-
gier Blokland, Victoria Bobicev, Loïc Boizou,
Emanuel Borges Völker, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Adriane
Boyd, Kristina Brokaitė, Aljoscha Burchardt,
Marie Candito, Bernard Caron, Gauthier Caron,
Gülşen Cebiroğlu Eryiğit, Flavio Massimiliano
Cecchini, Giuseppe G. A. Celano, Slavomír
Čéplö, Savas Cetin, Fabricio Chalub, Jinho
Choi, Yongseok Cho, Jayeol Chun, Silvie
Cinková, Aurélie Collomb, Çağrı Çöltekin,
Miriam Connor, Marine Courtin, Elizabeth
Davidson, Marie-Catherine de Marneffe, Vale-
ria de Paiva, Arantza Diaz de Ilarraza, Carly
Dickerson, Bamba Dione, Peter Dirix, Kaja
Dobrovoljc, Timothy Dozat, Kira Droganova,
Puneet Dwivedi, Hanne Eckhoff, Marhaba Eli,
Ali Elkahky, Binyam Ephrem, Tomaž Erjavec,
Aline Etienne, Richárd Farkas, Hector Fernan-
dez Alcalde, Jennifer Foster, Cláudia Freitas,
Kazunori Fujita, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Moa Gärdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökır-
mak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta González Saavedra, Matias Grioni,
Normunds Grūzītis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Har-
ris, Dag Haug, Johannes Heinecke, Felix Hennig,
Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Jena Hwang, Takumi
Ikeda, Radu Ion, Elena Irimia, Ọlájídé Ishola,
Tomáš Jelínek, Anders Johannsen, Fredrik Jør-
gensen, Hüner Kaşıkara, Andre Kaasen, Sylvain
Kahane, Hiroshi Kanayama, Jenna Kanerva,
Boris Katz, Tolga Kayadelen, Jessica Kenney,
Václava Kettnerová, Jesse Kirchner, Arne Köhn,
Kamil Kopacewicz, Natalia Kotsyba, Jolanta
Kovalevskaitė, Simon Krek, Sookyoung Kwak,
Veronika Laippala, Lorenzo Lambertino, Lucia
Lam, Tatiana Lando, Septina Dian Larasati,
Alexei Lavrentiev, John Lee, Phương Lê Hồng,
Alessandro Lenci, Saran Lertpradit, Herman
Leung, Cheuk Ying Li, Josie Li, Keying Li,
KyungTae Lim, Yuan Li, Nikola Ljubešić, Olga
Loginova, Olga Lyashevskaya, Teresa Lynn,
Vivien Macketanz, Aibek Makazhanov, Michael
Mandl, Christopher Manning, Ruli Manurung,
Cătălina Mărănduc, David Mareček, Katrin
Marheinecke, Héctor Martínez Alonso, André
Martins, Jan Mašek, Yuji Matsumoto, Ryan

McDonald, Sarah McGuinness, Gustavo Men-
donça, Niko Miekka, Margarita Misirpashayeva,
Anna Missilä, Cătălin Mititelu, Yusuke Miyao,
Simonetta Montemagni, Amir More, Laura
Moreno Romero, Keiko Sophie Mori, Tomohiko
Morioka, Shinsuke Mori, Shigeki Moro, Bjartur
Mortensen, Bohdan Moskalevskyi, Kadri Muis-
chnek, Yugo Murawaki, Kaili Müürisep, Pinkey
Nainwani, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne,
Lương Nguyễn Thị, Huyền Nguyễn Thị Minh,
Yoshihiro Nikaido, Vitaly Nikolaev, Rattima
Nitisaroj, Hanna Nurmi, Stina Ojala, Adé-
dayọ̀ Olúòkun, Mai Omura, Petya Osenova,
Robert Östling, Lilja Øvrelid, Niko Parta-
nen, Elena Pascual, Marco Passarotti, Ag-
nieszka Patejuk, Guilherme Paulino-Passos, An-
gelika Peljak-Łapińska, Siyao Peng, Cenel-
Augusto Perez, Guy Perrier, Daria Petrova,
Slav Petrov, Jussi Piitulainen, Tommi A Piri-
nen, Emily Pitler, Barbara Plank, Thierry
Poibeau, Martin Popel, Lauma Pretkalniņa,
Sophie Prévost, Prokopis Prokopidis, Adam
Przepiórkowski, Tiina Puolakainen, Sampo
Pyysalo, Andriela Rääbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama,
Carlos Ramisch, Vinit Ravishankar, Livy Real,
Siva Reddy, Georg Rehm, Michael Rießler,
Erika Rimkutė, Larissa Rinaldi, Laura Rituma,
Luisa Rocha, Mykhailo Romanenko, Rudolf
Rosa, Davide Rovati, Valentin Roșca, Olga
Rudina, Jack Rueter, Shoval Sadde, Benoît
Sagot, Shadi Saleh, Alessio Salomoni, Tanja
Samardžić, Stephanie Samson, Manuela San-
guinetti, Dage Särg, Baiba Saulīte, Yanin
Sawanakunanon, Nathan Schneider, Sebastian
Schuster, Djamé Seddah, Wolfgang Seeker, Moj-
gan Seraji, Mo Shen, Atsuko Shimada, Hiroyuki
Shirasu, Muh Shohibussirri, Dmitry Sichinava,
Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov,
Aaron Smith, Isabela Soares-Bastos, Carolyn
Spadine, Antonio Stella, Milan Straka, Jana Str-
nadová, Alane Suhr, Umut Sulubacak, Shingo
Suzuki, Zsolt Szántó, Dima Taji, Yuta Taka-
hashi, Fabio Tamburini, Takaaki Tanaka, Is-
abelle Tellier, Guillaume Thomas, Liisi Torga,
Trond Trosterud, Anna Trukhina, Reut Tsar-
faty, Francis Tyers, Sumire Uematsu, Zdeňka
Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya
Vajjala, Daniel van Niekerk, Gertjan van Noord,
Viktor Varga, Eric Villemonte de la Clergerie,
Veronika Vincze, Lars Wallin, Abigail Walsh,
Jing Xian Wang, Jonathan North Washington,
Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-
sum Wong, Alina Wróblewska, Mary Yako,
Naoki Yamazaki, Chunxiao Yan, Koichi Ya-
suoka, Marat M. Yavrumyan, Zhuoran Yu,
Zdeněk Žabokrtský, Amir Zeldes, Daniel Ze-
man, Manying Zhang, and Hanzhi Zhu. 2019.
Universal Dependencies 2.4. LINDAT/CLARIN
digital library at the Institute of Formal and Ap-

http://hdl.handle.net/11234/1-2988

130

plied Linguistics (ÚFAL), Faculty of Mathemat-
ics and Physics, Charles University.

Joakim Nivre and Mario Scholz. 2004. Determin-
istic dependency parsing of English text. In
COLING 2004, 20th International Conference
on Computational Linguistics, Proceedings of
the Conference, 23-27 August 2004, Geneva,
Switzerland.

Mizuhito Ogawa. 2004. Complete axiomatization
of an algebraic construction of graphs. In Func-
tional and Logic Programming, pages 163–179,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Emily Pitler, Sampath Kannan, and Mitchell Mar-
cus. 2013. Finding optimal 1-endpoint-crossing
trees. TACL, 1:13–24.

Emily Pitler and Ryan McDonald. 2015. A linear-
time transition system for crossing interval trees.
In Proceedings of the 2015 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 662–671, Denver, Colorado.
Association for Computational Linguistics.

Heinz Prüfer. 1918. Neuer Beweis eines Satzes über
Permutationen (New proof of a theorem on per-
mutations). Archiv der Mathematik und Physik,
27(3):142–144.

G. Pólya. 1937. Kombinatorische Anzahlbestim-
mungen für Gruppen, Graphen und chemische
Verbindungen. Acta Math., 68:145–254.

Peng Qi and Christopher D. Manning. 2017. Arc-
swift: A novel transition system for dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Lin-
guistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 2: Short Papers, pages 110–
117. Association for Computational Linguistics.

Thomas Ruprecht and Tobias Denkinger. 2019.
Implementation of a Chomsky-Schützenberger
n-best parser for weighted multiple context-free
grammars. In (Burstein et al., 2019), pages 178–
191.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency DAG parsing. In Proceedings of
COLING 2008, the 22nd International Confer-
ence on Computational Linguistics, pages 753–
760, Manchester, UK. Coling 2008 Organizing
Committee.

Isao Sasano, Zhenjiang Hu, Masato Takeichi,
and Mizuhito Ogawa. 2000. Make it practi-
cal: a generic linear-time algorithm for solv-
ing maximum-weightsum problems. In Pro-
ceedings of the Fifth ACM SIGPLAN Interna-
tional Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-
21, 2000., pages 137–149. Association for Com-
puting Machinery.

Tianze Shi, Liang Huang, and Lillian Lee. 2017.
Fast(er) exact decoding and global training for
transition-based dependency parsing via a min-
imal feature set. In Proceedings of the 2017
Conference on Empirical Methods in Natural
Language Processing, pages 12–23, Copenhagen,
Denmark. Association for Computational Lin-
guistics.

B. Steinsky. 2003. Efficient coding of labeled
directed acyclic graphs. Soft Computing,
7(5):350–356.

Michalina Strzyz, David Vilares, and Carlos
Gómez-Rodríguez. 2019. Viable dependency
parsing as sequence labeling. In (Burstein et al.,
2019), pages 717–723.

Wolfgang Thomas. 2002. A short introduction to
infinite automata. In Developments in Lan-
guage Theory, pages 130–144, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

György Turán. 1984. On the succinct representa-
tion of graphs. Discrete Applied Mathematics,
8(3):289 – 294.

David Vilares and Carlos Gómez-Rodríguez. 2018.
A transition-based algorithm for unrestricted
AMR parsing. In Proceedings of the 2018
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2
(Short Papers), pages 142–149, New Orleans,
Louisiana. Association for Computational Lin-
guistics.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey E. Hinton.
2015. Grammar as a foreign language. In Ad-
vances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 2773–
2781.

W. A. Woods. 1970. Transition network grammars
for natural language analysis. Communications
of the ACM, 13(10):591–606.

Nicholas C. Wormald. 1979. Enumeration of la-
belled graphs II: Cubic graphs with a given con-
nectivity. Journal of the London Mathematical
Society, s2-20(1):1–7.

H. Yamada and Y. Matsumoto. 2003. Statistical
Dependency Analysis with Support Vector ma-
chines. In The 8th International Workshop of
Parsing Technologies (IWPT2003).

Anssi Yli-Jyrä. 2005. Approximating dependency
grammars through intersection of star-free reg-
ular languages. International Journal of Foun-
dations of Computer Science, 16(3):565–579.

http://www.aclweb.org/anthology/C04-1010
http://www.aclweb.org/anthology/C04-1010
https://doi.org/10.1007/978-3-540-24754-8_13
https://doi.org/10.1007/978-3-540-24754-8_13
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/23
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/23
https://doi.org/10.3115/v1/N15-1068
https://doi.org/10.3115/v1/N15-1068
https://doi.org/10.1007/BF02546665
https://doi.org/10.1007/BF02546665
https://doi.org/10.1007/BF02546665
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/P17-2018
https://aclweb.org/anthology/papers/N/N19/N19-1016/
https://aclweb.org/anthology/papers/N/N19/N19-1016/
https://aclweb.org/anthology/papers/N/N19/N19-1016/
https://www.aclweb.org/anthology/C08-1095
https://www.aclweb.org/anthology/C08-1095
https://doi.org/10.1145/351240.351254
https://doi.org/10.1145/351240.351254
https://doi.org/10.1145/351240.351254
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.1007/s00500-002-0223-5
https://doi.org/10.1007/s00500-002-0223-5
https://aclweb.org/anthology/papers/N/N19/N19-1077/
https://aclweb.org/anthology/papers/N/N19/N19-1077/
https://doi.org/10.1007/3-540-46011-X_10
https://doi.org/10.1007/3-540-46011-X_10
https://doi.org/https://doi.org/10.1016/0166-218X(84)90126-4
https://doi.org/https://doi.org/10.1016/0166-218X(84)90126-4
https://doi.org/10.18653/v1/N18-2023
https://doi.org/10.18653/v1/N18-2023
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language
https://doi.org/10.1145/355598.362773
https://doi.org/10.1145/355598.362773
http://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s2-20.1.1
http://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s2-20.1.1
http://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s2-20.1.1
https://doi.org/10.1142/S0129054105003169
https://doi.org/10.1142/S0129054105003169
https://doi.org/10.1142/S0129054105003169

131

Anssi Yli-Jyrä. 2012. On dependency analysis via
contractions and weighted FSTs. In Shall We
Play the Festschrift Game?, Essays on the Oc-
casion of Lauri Carlson’s 60th Birthday, pages
133–158. Springer.

Anssi Yli-Jyrä. 2017. Bounded-depth high-
coverage search space for noncrossing parses. In
Proceedings of the 13th International Confer-
ence on Finite State Methods and Natural Lan-
guage Processing, FSMNLP 2017, Umeå, Swe-
den, September 2017, pages 30–40. Association
for Computational Linguistics.

Anssi Yli-Jyrä. 2019. How to embed noncross-
ing trees in Universal Dependencies treebanks
in a low-complexity regular language. Journal
of Language Modelling. Forthcoming.

Anssi Yli-Jyrä and Carlos Gómez-Rodríguez. 2017.
Generic axiomatization of families of noncross-
ing graphs in dependency parsing. In Proceed-
ings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1745–1755. Association
for Computational Linguistics.

Yue Zhang and Joakim Nivre. 2011. Transition-
based dependency parsing with rich non-local
features. In The 49th Annual Meeting of the
Association for Computational Linguistics: Hu-
man Language Technologies, Proceedings of the
Conference, 19-24 June, 2011, Portland, Ore-
gon, USA - Short Papers, pages 188–193. The
Association for Computer Linguistics.

https://doi.org/10.1007/978-3-642-30773-7_10
https://doi.org/10.1007/978-3-642-30773-7_10
https://doi.org/10.18653/v1/W17-4007
https://doi.org/10.18653/v1/W17-4007
https://doi.org/10.18653/v1/P17-1160
https://doi.org/10.18653/v1/P17-1160
http://www.aclweb.org/anthology/P11-2033
http://www.aclweb.org/anthology/P11-2033
http://www.aclweb.org/anthology/P11-2033

