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Abstract
Transition-based parsing of natural lan-
guage uses transition systems to build di-
rected annotation graphs (digraphs) for
sentences. In this paper, we define, for
an arbitrary ordered digraph, a unique de-
composition and a corresponding linear en-
coding that are associated bijectively with
each other via a new transition system.
These results give us an efficient and suc-
cinct representation for digraphs and sets
of digraphs. Based on the system and our
analysis of its syntactic properties, we give
structural bounds under which the set of
encoded digraphs is restricted and becomes
a context-free or a regular string language.
The context-free restriction is essentially a
superset of the encodings used previously
to characterize properties of noncrossing
digraphs and to solve maximal subgraphs
problems. The regular restriction with a
tight bound is shown to capture the Uni-
versal Dependencies v2.4 treebanks in lin-
guistics.

1 Introduction
Transition systems have been a widely used
mechanism in language understanding, cog-
nitive modelling of natural language process-
ing and syntactic and semantic parsing of
sentences. The combination of high parsing
speed of transition systems with the accu-
racy of the attached statistical models have
paved the way for practical applications of
parsing and similar data transformations en-
abled by these systems (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Zhang
and Nivre, 2011; Chen and Manning, 2014;
Dyer et al., 2015; Andor et al., 2016; Kiper-
wasser and Goldberg, 2016; Shi et al., 2017).
Transition systems may also be used to encode
dependency trees, DAGs and other ordered

digraphs, and to connect these to the classi-
cal formal language theory and to the prob-
lems of graph representation (Turán, 1984;
Farzan and Munro, 2013; Yli-Jyrä, 2019),
graph enumeration (Pólya, 1937; Conte et al.,
2018; Yli-Jyrä, 2019), integer sequence dis-
covery (Hoppe and Petrone, 2016; Yli-Jyrä
and Gómez-Rodríguez, 2017), maximum sub-
graph inference (Conte et al., 2019; Yli-Jyrä
and Gómez-Rodríguez, 2017), algebraic repre-
sentations of graph queries (Courcelle, 1990;
Ogawa, 2004; Yli-Jyrä and Gómez-Rodríguez,
2017), encoder-decoder parsing (Vinyals et al.,
2015; Strzyz et al., 2019) and parsing as
sequence labeling (Gómez-Rodríguez and Vi-
lares, 2018).

The study of transition systems in gen-
eral ranges from Turing complete transi-
tion systems (Woods, 1970; Goldin et al.,
2004; Thomas, 2002) to well-understood tran-
sition systems that build projective depen-
dency structures, context-free parse trees and
noncrossing graphs (Nivre, 2003, 2004; Gold-
berg and Elhadad, 2010; Kuhlmann et al.,
2011; Sagae and Tsujii, 2008; Honnibal and
Johnson, 2015). The need to model non-
local dependencies and crossing edges in parses
have motivated the study of transition sys-
tems that balance the computational com-
plexity and the coverage of the possible out-
puts. Many of these systems are exten-
sions of stack-based transition systems (At-
tardi, 2006; Nivre, 2009; Gómez-Rodríguez
and Nivre, 2013; de Lhoneux et al., 2017; Qi
and Manning, 2017; Gómez-Rodríguez et al.,
2018) but there are also some proposals for
transition systems that are based, solely or ad-
ditionally, on some other memory model, such
as a shack, a list, registers, a set, or a cache
(Kornai and Tuza, 1992; Covington, 2000;
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Choi and McCallum, 2013; Pitler and McDon-
ald, 2015; Fernández-González and Gómez-
Rodríguez, 2018; Gildea et al., 2018; Vilares
and Gómez-Rodríguez, 2018; Coavoux and Co-
hen, 2019).

In this paper, we present a transition sys-
tem that implements an efficient, invertible
function between its action sequences and ar-
bitrary ordered digraphs. The action se-
quences of the system can also viewed as
strings of balanced brackets, constituting for-
mal languages that have elegant Chomsky-
Schützenberger representations and many de-
sirable characteristics of input-driven lan-
guages. The transition-based transformation
between the relational and sequential repre-
sentations of digraphs opens a possibility to
apply classical formal language theory of sub-
sets of free monoids to the classes of digraphs.

Our transition system takes advantage of a
new kind of decomposition of a digraph: the
rope decomposition views the underlying graph
as a union of subgraphs what we call ropes.
The longest edge of a rope shares exactly one
endpoint with each of the other edges in it.

The theoretical notions of rope decomposi-
tions and the new transition system are intro-
duced in Sections 3-4. The action sequences
of the transition system are related to formal
languages in Sections 5-6. Sections 7-8 con-
tain corpus-based empirical evaluation and a
discussion that argues that the developed en-
coding for digraphs contributes to the work in
some related and important research areas in
graph theory and computer science.

2 Basic Definitions

Denote the empty string with ϵ. Denote trans-
pose of a binary relation X as XT . Define the
composition of two binary relations X,Y as
X ◦ Y = {(x, z) | (x, y) ∈ X, (y, z) ∈ Y }.
Abbreviate an assignment S ← S ∪ T as
S

∪← T . Let Vn denote the finite set of integers
{1, ..., n}. Let the parameter d ∈ {<,>,<>}
indicate the choice between leftward, right-
ward and bidirectional orientation of arcs in
actions that produce these arcs.

A (finite ordered) graph is a pair (Vn, E)
where Vn is a finite set of ordered vertices
and E ⊆ {(u, v) ∈ Vn × Vn | u < v} is
a set of edges. For each edge (i, j) ∈ E,

we call i the left index and j the right in-
dex of the edge. A (finite ordered) digraph
is a pair (Vn, A) where Vn is a set of ver-
tices and A ⊆ {(u, v) ∈ Vn × Vn | u ̸= v}
is a set of arcs. The underlying graph of a
digraph (Vn, A) is the graph (Vn, EA), where
EA = {(i, j) | (i, j) ∈ A ∪AT , i < j}.

3 New Notions

3.1 Rope Cover
Definition 3.1. Let (Vn, E) be an ordered
graph. In this graph, edge (h, k), where h < k,
is a (properly-longer shared-endpoint) covering
edge for a shorter edge (i, j) if either h = i and
i < j < k, or j = k and h < i < j. Denote
this situation by (h, k) : (i, j).
Definition 3.2. A subset R ⊆ E is a rope
cover of the graph (Vn, E) if, for every edge
e ∈ E\R, there is an edge c ∈ R such that c : e.
Moreover, R is a proper rope cover (PRC) if is
there is no edges c1, c2 ∈ R s.t. c1 : c2.
Proposition 3.1. Any element in a PRC can
be identified by specifying either its left index
or its right index.
Proposition 3.2. Every graph has a PRC.
Theorem 3.3. The PRC is unique.

Proof. Let (Vn, E) be an arbitrary graph
and let R,R′ ⊆ E be two PRCs of the
graph. Assuming that R ̸= R′ and that
there is (x0, y0) ∈ R\R′, we show, by in-
duction, that there is an infinite sequence
of distinct edges (x0, y0), (x2, y2), (x4, y4), ... ∈
R\R′ and (x1, y1), (x3, y3), (x5, y5), ... ∈ R′\R
where (xi+1, yi+1) : (xi, yi) for every i ≥
0. To prove the required induction steps,
there is, by the definition of a PRC, a cov-
ering edge (xi+1, yi+1) in R′\R for every edge
(xi, yi) ∈ R\R′, and there is a covering edge
(xi+1, yi+1) ∈ R\R′ for every edge (xi, yi) ∈
R′\R. Such an infinite sequence of distinct
edges requires E to be infinite. By contradic-
tion, the PRC of the graph is unique.

Definition 3.3. For graph (Vn, E) with a
PRC R, the rope-thickness of a vertex i ∈ Vn−1

is the number of edges (h, j) ∈ R satisfying
h ≤ i < j. The rope-thickness of the graph is
the maximum over the rope-thicknesses of all
vertices i ∈ Vn−1 in the graph.
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Lemma 3.4. For any graph of n vertices, its
PRC is constructed in O(n3).

Proof. Let (Vn, E) be a graph. To construct
the PRC, start with R0 = ∅ and E0 = E.
Given Ri and Ei, i ≥ 0, construct Ri+1 as
the set all edges in Ei that do not have a cov-
ering edge in Ei, and Ei+1 as the set of all
edges in Ei that do not have a covering edge
in Ri+1. Each such iteration is computed in
O(n2). Clearly, Ei+1 ⊊ Ei unless Ei = ∅, and
E⌊n/2⌋ = ∅. The PRC of the graph is the set
R = R1∪R2∪ ...∪R⌊n/2⌋, and it is constructed
in O(n3) time.

Corollary 3.5. The rope thickness of a graph
can be computed in cubic time.

Example (4) is a graph ([6], {(1, 6), (1, 5),
(2, 5), (3, 5), (4, 5)}) for which we obtain sets

R0 = {} E0 = E (1)
R1 = {(1, 6)} E1 = {(2, 5), (3, 5), (4, 5)} (2)
R2 = {(2, 5)} E2 = {} (3)

1 2 3 4 5 6

(4)

Convention 3.4 (“Left Index”). We will
sometimes refer to the edges in a PRC by their
left indices (see Proposition 3.1).
Convention 3.5 (“Indirect Edges”).
When an edge (i, j) has a covering edge (h, j),
h < i < j, we refer to the edge (i, j) indirectly,
via the pair (i, h) where h is the left index
of the covering edge.

The PRC of the graph (4) comprises the
edges {(1, 6), (2, 5)}, while the remaining edges
are covered by these. Edge (1, 5) is a usual
edge, and there are indirect edges, (3, 2)
and (4, 2), that we draw under the vertices.
The rope thickness of vertices 2 – 4 is two,
which is also the maximum for the whole
graph.

3.2 Ropes
Definition 3.6. An ordered graph (Vn, E) is
called a rope if n = 1 or the PRC of the graph
is {(1, n)}. This is complete if E = {(i, n) |
1 ≤ i < n} ∪ {(1, j) | 1 < j ≤ n}.

Ropes can be used in algorithms that con-
struct graphs while processing vertices. Ex-
ample (5) shows a digraph whose underly-
ing graph is a complete rope. Some of its
edges would cross one another if the edges were
drawn above a line containing the vertices.

1 2 3 4 5 (5)

Two-way algorithms can build a complete
rope in two passes with a vertex counter and
one memory unit that contains a reference to
one index of the covering edge. After memoriz-
ing the left index of the covering edge to vari-
able x, such an algorithm processes vertices 2
to 5 in Example (5) and builds edges (x, 2),
(x, 3), (x, 4) and (x, 5). During the backward
pass over the vertices, the algorithm saves the
right index of the covering edge to variable x
and builds edges (4, x), (3, x), and (2, x).

One-way algorithms process each vertex
only once as their output can represent the
edges (i, n), 2 ≤ i ≤ n − 1, in Example (5)
indirectly, by a reference to the left index of
the respective covering edge. In the output,
the edge (2, 5) is represented as an indirect
edge (2, 1) where 1 identifies the left in-
dex of the covering edge (1, 5). After process-
ing the vertices, the composition of (2, 1) and
(1, 5) is computed to obtain the actual edge
(2, 5).

3.3 Rope Assignment
Theorem 3.6. There are graphs where an
edge has two distinct covering edges in the
PRC.

Proof. The PRC of the graph of Example (6)
is {(1, 3), (2, 4)}.

1 2 3 4

(6)

The edge (2, 3) is covered by the edge (1, 3)
with which it shares the right index, and by
the edge (2, 4) with which it shares the left
index.

When an edge has two covering edges, we
need a consistent policy for treating them. In
(6), we can assign the edge (2, 3) to either of
the covering edges (1, 3), (2, 4), or both.
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Convention 3.7 (“Earliest”). We adopt a
convention according to which the ambiguity
between two possible covering edges is resolved
by assigning the edge to the earliest available
covering edge.

By Convention 3.7, the arc (2, 3) in Example
(6) will be assigned to the Earliest covering
edge (1, 3), which can be identified by its left
index 1, by Convention 3.4. The covered arc
(2, 3) is thus represented as an indirect edge
(2, 1) by Convention 3.5.

3.4 Rope Decomposition
This section introduces a new representation
for digraphs. The idea is to start from the
PRC of the underlying graph, and then assign
the remaining arcs to covering edges.
Definition 3.8. A rope decomposition of
an (ordered) digraph (Vn, A) is a tuple
(Vn, R, A

<
, A

>
, I

<
, I

>
) satisfying the following

conditions:

1. edges R ⊆ EA constitute a PRC of the
underlying graph (Vn, EA),

2. A
<
⊆ {(i, j)∈AT |(i, k)∈R, i<j≤k} and

A
>
⊆ {(i, j)∈A|(i, k)∈R, i<j≤k} are,

respectively, left and right arcs whose
left index coincides with the left index of
the covering edge,

3. I
<
⊆{(i, h)|(i, j)∈AT , (h, j)∈R, h<i<j}

and I
>
⊆{(i, h)|(i, j)∈A, (h, j)∈R, h<i<j}

are, respectively, indirect representations
for arcs whose right index coincides
with the respective covering edge but is
represented indirectly, via the left index
of the respective covering edge.

4. The four sets of arcs represent together
the original set of arcs: A = A

<

T ∪ ( I
<
◦

R)T ∪ A
>
∪ ( I

>
◦R).

Lemma 3.7. Under the “Earliest” conven-
tion, the relation between digraphs and rope
decompositions is a bijection.

Proof. (⇒): Let G = (Vn, A) be a digraph
and G′ = (Vn, EA) its underlying graph. By
Theorem 3.3, G′ has a unique PRC R ⊆ EA.
By the “Earliest” convention, we choose the

earliest available covering edge for each edge
and first construct the sets of indirect arcs
I
<
= {(i, h) | (i, j)∈AT , (h, j)∈R, h<i<j} and

I
>
= {(i, h) | (i, j)∈A, (h, j)∈R, h<i<j}. Af-

ter this, we construct the sets of arcs whose left
index coincides with the covering edges: A

<
=

{(i, j)∈AT \( I
<
◦R)|(i, k)∈R, i<j≤k} and A

>
⊆

{(i, j)∈(A\( I
>
◦R) | (i, k)∈R, i<j≤k}.

(⇐): Let (G = Vn, R, A
<
, A

>
, I

<
, I

>
) be a rope

decomposition. We obtain the corresponding
graph as (Vn, A

<

T ∪ ( I
<
◦R)T ∪A

>
∪ ( I

>
◦R)).

4 A New Transition System
By Lemma 3.7, there is a bijection between
(a class of) rope decompositions and digraphs.
We complement this result by relating each
rope decomposition bijectively to a sequence
of actions. The actions are controlled by a
transition system.

Our transition system has a buffer β ∈ N,
a main stack σ ∈ N∗ and an auxiliary stack
τ ∈ N∗, each containing vertex indices. The
tuple (σ, τ, β) of these three structures forms
the core of the configurations between which
the transition system moves. As an input, the
system takes a sequence of actions that tell
how to build a rope decomposition in an incre-
mental manner. The possible types of actions
of the transition system are listed in Table 1.

Initially, both the stacks are empty and the
buffer β consists of the list of positive integers.
The final configurations of the system con-
sists of all those configurations (ϵ, ϵ, β) where
both stacks are empty, and β contains a suf-
fix [n, n + 1, ...] of the list of positive inte-
gers. When the system reaches a final con-
figuration, it has produced a relational struc-
ture (Vn, R, A

<
, A

>
, I

<
, I

>
) of a rope decomposi-

tion. By doing so, the transition system maps
the input sequence of actions to a rope decom-
position that represents a digraph. It is not
too difficult to define the inverse of this func-
tion, but we suppress the details in the interest
of space.

4.1 Main Actions
The most important actions of the transition
system create the set of edges in the PRC R.
By a shift (sh) action, the system removes a
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Table 1: Transition system for rope decompositions.

action transition between configurations effect on the decomposition
sh σ, ϵ, iβ, [_,_,_] ⇒ σi, ϵ, β, [−ins,− re,− pass

0
]

nx σ, ϵ, iβ, [_,_,_] ⇒ σ , ϵ, β, [−ins,− re,− pass
0

]

re
d

σi, ϵ, jβ, [−ins,− re,_] ⇒ σ , ϵ, jβ, [−ins,+ re,− pass
0

] R
∪← {(i, j)}, A

d

∪← {(i, j)}

pass
0

σi, τ, jβ, [−ins, α re,_] ⇒ σ, iτ, jβ, [−ins, α re,+ pass
0

]

pass
d

σi, τ, jβ, [−ins,_,_] ⇒ σ, iτ, jβ, [−ins,+ re,− pass
0

] A
d

∪← {(i, j)}

ins
0

σ, iτ, jβ, [_,_,− pass
0

] ⇒ σi, τ, jβ, [+ins,+ re,− pass
0

]

ins
d

σ, iτ, jβ, [_,_,_] ⇒ σi, τ, jβ, [+ins,+ re,− pass
0

] I
d

∪← {(j, i)}

vertex index i from the front of the buffer and
places it to the top of the stack in order to
prepare for a future situation where the index
i is the left index of an edge in the PRC, i.e.,
∃j.R(i, j). When the index j becomes avail-
able in the front of the buffer, the system cre-
ates the edge (i, j) ∈ R by a reduce (re) action
and removes the index i from the stack. The
specifier d ∈ {<,>,<>} of the action tells
whether the corresponding arc (i, j) is to be
added to A

<
, A

>
or both. Only one reduce ac-

tion is allowed in a row. By a next (nx) action,
the system removes an index i from the front
of the buffer to secure the situation where no
covering edge has vertex i as its left index, i.e.,
¬∃j.R(i, j).

Example (7) is a digraph whose underlying
graph is a complete graph with an edge be-
tween every pair of vertices. The PRC of this
graph is {(1, 7), (2, 6), (3, 5)}.

1 2 3 4 5 6 7 (7)

The PRC R, and the corresponding arcs in A
<

and A
>

of the rope decomposition of this di-
graph are created by the action sequence:

(ϵ, ϵ, [1..])
sh⇒ ([1], ϵ, [2..])

sh⇒ ([1, 2], ϵ, [3..])
sh⇒

([1..3], ϵ, [4..])
nx⇒ ([1..3], ϵ, [5..])

re
>
⇒ ([1, 2], ϵ, [5..])

nx⇒

([1, 2], ϵ, [6..])

re
>
⇒ ([1], ϵ, [6..])

nx⇒ ([1], ϵ, [7..])

re
>
⇒ (ϵ, ϵ, [7..])

(8)

The main actions involved in this example do
not use the auxiliary stack. The edges in R
and the corresponding arcs are created by the
reduce actions as follows:
configuration action effect
([1..3], ϵ, [5..]) re

>
R

∪← {(3, 5)}, A
>

∪← {(3, 5)}

([1, 2], ϵ, [6..]) re
>

R
∪← {(2, 6)}, A

>

∪← {(2, 6)}

([1], ϵ, [7..]) re
>

R
∪← {(1, 7)}, A

>

∪← {(1, 7)}

(9)

4.2 Intermediate Actions
In order to create arcs whose underlying edges
do not belong to the PRC, some additional,
intermediate actions are needed. Such inter-
mediate actions allow the front of the buffer to
form arcs with non-top elements of the main
stack.

For instance, the first visit to configuration
([1..3], ϵ, [4..]) allows actions that move the el-
ements of the main stack temporarily to the
auxiliary stack before restoring the original
configuration:

... ⇒ ([1..3], ϵ, [4..])

pass
>
⇒ ([1, 2], [3], [4..])

pass
>
⇒ ([1], [2, 3], [4..])

pass
>
⇒ (ϵ, [1..3], [4..])

ins
>
⇒ ([1], [2, 3], [4..])

ins
>
⇒ ([1, 2], [3], [4..])

ins
>
⇒ ([1..3], ϵ, [4..]) ⇒ ... (10)

The pass (pass) and insert (ins) actions create
arcs whose underlying edges do not belong to
the PRC:

configuration action effect
([1..3], ϵ, [4..]) pass

>
A
>

∪← {(3, 4)}

([1, 2], [3], [4..]) pass
>

A
>

∪← {(2, 4)}

([1], [2, 3], [4..]) pass
>

A
>

∪← {(1, 4)}

(ϵ, [1..3], [4..]) ins
>

I
>

∪← {(4, 1)}

([1], [2, 3], [4..]) ins
>

I
>

∪← {(4, 2)}

([1, 2], [3], [4..]) ins
>

I
>

∪← {(4, 3)}

(11)

To prevent multiple re-entry to the same con-
figuration and repeating the intermediate ac-
tions, the detailed configurations of the tran-
sition system include control variables that re-
strict the available actions in different phases
of the transition system. As the insert actions
set +ins, the reduce and pass astions become
blocked until the next shift/next action.

Some intermediate actions do not create
arcs. These intermediate actions have an im-
portant role in allowing other actions to access
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the non-top elements of the main stack. Yet
the sequence pass

0
ins
0

is blocked by the con-
trol variable pass

0
as a useless sequence.

A reduce action can be immediately pre-
ceded by several pass

0
actions. Example

(6) has a PRC {(1, 3), (2, 4)} that is created
through a sequence that involves intermediate
actions. The preceding pass and the following
insert actions allow the first reduce action to
get access to a non-top element of the main
stack and to remove it from the stack:

(ϵ, ϵ, [1..])
sh⇒ ([1], ϵ, [2..])

sh⇒ ([1, 2], ϵ, [3..])

pass
0
⇒

([1], [2], [3..])

re
>
⇒ (ϵ, [2], [3..])

ins
0
⇒ ([2], ϵ, [3..])

nx⇒

([2], ϵ, [4..])

re
>
⇒ (ϵ, ϵ, [4..])

(12)

The configuration ([1], ϵ, [2..]) allows a combi-
nation of a pass and insert actions. The insert
action puts, to I

<
, the pair (2, 1) representing

the arc (3, 2) in Example (6).

...
sh⇒ ([1], ϵ, [2..])

pass
0
⇒ (ϵ, [1], [2..])

ins
<
⇒ ([1], ϵ, [2..])

sh⇒ ... (13)

4.3 Correctness
Lemma 4.1. For every digraph, there is a
unique action sequence that creates the edges
of its PRC.

Proof sketch. By Proposition 3.1, no ver-
tex needs to start or finish more than one edge
in the PRC. The transition system allows to
start one covering edge per vertex with a shift
action and finish any previously started cover
edge with a reduce action. A crossing cover
edge can be finished by accessing the non-
topmost stack elements with pass

0
and ins

0

actions in their appropriate time.
Theorem 4.2. The transition system is able
to produce every possible rope decomposition,
capturing every digraph.

Proof sketch. By Lemma 4.1, we have a
way to create the PRC and the corresponding
arcs. The set of arcs is extended to represent
the rest of the arcs via pass and insert actions
that create the arcs that are properly covered
by the edges in the PRC.

5 Linear Encoding
The action sequences of the transition system
can be seen as linearisations for the digraphs.

In particular, the undirected graph in Exam-
ple (6) is encoded as the action sequence in
(14). To make the linearisation more conve-
nient for eyes, we replace actions with brackets
and other symbols in (15).

sh pass
0

ins
<>

sh pass
0

re
<>

ins
0

nx re
<>

(14)

[[ • ]
0

[
<>

[[ • ]
0

]]
<>

[
0

• ]]
<>

(15)

Convention 5.1. By convention, the brack-
eting scheme renames the actions of the tran-
sition system as follows:

nx sh pass
0

pass
d

ins
0

ins
d

re
d

• [[ • ]
0

]
d

[
0

[
d

]]
d

(16)

The convention improves the readabil-
ity of action sequence and gives com-
pact action sequences: especially, the
digraph in Example (7) is encoded as string
[[ • ]

>
[
<
[[ • ]

>
]
>
[
<
[
<
[[ • ]

>
]
>
]
>
[
<
[
<
[
<

• ]]
>
]
>
]
>
[
<
[
<

• ]]
>
]
>
[
<

• ]]
>

.

Example (17) demonstrates how the bracket(s)
now correspond almost iconically to the rep-
resented arcs.

[[ • ]
>
[
0
[[ • ]

0
]]
>
[
0
[[ • ]

0
]]
>
[
0
[[ • ]

0
]
>
[
0
[
0

• ]
0
]]
>
[
0

• ]]
> (17)

Convention 5.1 benefits us when we anal-
yse the formal, language theoretic properties
of such action sequences altough the encoding
is not otherwise meant for human inspection
and its direct manipulation by hand is prone
to errors. The convention borrows ideas from
Yli-Jyrä (2017) but differs from it in four im-
portant aspects:

1. The vertices are separated with a bullet
symbol ( • ) instead of curly brackets ({}).

2. The left brackets {[[,[,[
0
} match the

right brackets {]],],]
0
}.

3. Weak brackets may be stacked (like in
]]][[[) in order to deal with stacked
pass and insert actions.

4. A strong closing bracket may occur inside
a stack of weak brackets (like in ]

0
]
0
]][[).

These changes are necessary to deal with cross-
ing arcs and the actions that operate on two
stacks.
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5.1 Syntactic Properties
In order to analyse the formal properties of
the transition system, we need to understand
how the actions, or the corresponding brack-
ets, form strings that correspond to ordered
graphs in a bijective manner. We induce the
following principles:

1. Each vertex corresponds to a sequence of
closing brackets followed by a sequence of
opening brackets.

2. Between “]]” and the closest preceding
“ • ”, there can be only “]

0
”-brackets.

This corresponds to the convention 3.7
that always chooses the “earliest” cov-
ering edge in the PRC of the underlying
graph. We do not need “]”-brackets to
produce arcs as we have an opportunity
to produce same arcs with “[”-brackets
earlier.

3. The unnecessary pair of pass and insert
actions, marked with bracket substring
“]

0
[
0
” do not occur in the strings.

4. The strong opening bracket “[[” always
occurs right before the vertex boundary
“ • ”.

5. The maximum number of brackets per
vertex is n− 1.

6. Left brackets BL = {[[,[
0
,[
d
} match right

brackets BR = {]]
d
,]

0
,]
d
}.

7. The rope thickness of the (di)graph is the
maximum number of momentarily open
brackets in its encoding.

According to the principles 1-4, the bracket
substrings that correspond to different vertices
constitute a context-free language W that is
generated by the grammar GW :

S → T ? | T ? [[ T ? → T | ϵ
R′ → ]]

<
| ]]

>
| ]]

<>
L′ → L | [

0

R → ]
<
| ]

>
| ]

<>
L → [

<
| [

>
| [

<>

T → R′ T ? | R T ? L′ | ]
0
T ? L | ]

0
T[

0

(18)

Lemma 5.1. The action sequences that con-
form to the seven principles allow only one way
to represent each ordered digraph.

Proof. The strong brackets are crucial for en-
coding all arcs of the digraph and the PRC of
its underlying graph in particular. Every di-
graph (Vn, A) has a unique PRC, and, due to
the principles 1-4, it is not possible to build the
same PRC with the correct arc orientations
in two different ways. By the second princi-
ple, all non-PRC arcs are assigned to a unique
covering edge. There is thus only one moment
when the right combination of indices is avail-
able in the configuration for constructing each
arc, and there is only one action sequence that
can construct any given digraph.

We also observe that string concatenation of
two action sequences gives an action sequence
that produces a digraph concatenation of two
ordered digraphs with one shared vertex.
Proposition 5.2. The encoding from digraphs
to strings is a mapping that preserves the
structure of the digraph concatenation monoid
and sends it the structure of a string concate-
nation monoid.

6 Formal Language Theory
Chomsky-Schützenberger (CS) parsing (Yli-
Jyrä, 2005, 2012; Hulden, 2009; Yli-Jyrä
and Gómez-Rodríguez, 2017; Ruprecht and
Denkinger, 2019) combines a particular kind
of language representations with weighted au-
tomata techniques. A prototypical CS style
language representation h(L ∩ D) involves a
homomorphic mapping (h) applied to an inter-
section of a a regular language component L
and a Dyck language D. Yli-Jyrä and Gómez-
Rodríguez (2017) used this kind of language
representations to show that their encoding
for the noncrossing digraphs (LNC-DIGRAPH)
is a context-free language and admits an ef-
ficient algorithm for finding maximal con-
strained subdigraphs in a weighted complete
digraph.

This section gives a CS style representa-
tion for the language of all encoded digraphs
(LDIGRAPH) by relaxing the requirement that
the L component of the language representa-
tion is a regular language. The represented
language is then not context-free, but the
representation is loosely speaking of “the CS
style”. The similarity becomes more obvious
when we derive a context-free approximation
of it.
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Lemma 6.1. There is a CS style representa-
tion for the language LDIGRAPH.

Proof. We start by defining a Dyck language
D that checks for balanced bracketing. Let
the internal alphabet of the representation be
Σ = {{, }}∪{[(l,r),](l,r) | l ∈ BL, r ∈ BR}. Let
D be the language generated by the grammar

S → ϵ | SS | {S} | [(l,r)S](l,r) (19)

where l ∈ BL and r ∈ BR. Let h : Σ∗ →
({ • }∪BL∪BR)

∗ be a homomorphism defined
in such a way that, for all l ∈ BL, r ∈ BR,

h(ab) = h(a)h(b) h(ϵ) = ϵ

h([(l,r)) = l h({) = ϵ

h(](l,r)) = r h(}) = • . (20)

Instead of the usual regular component of CS
representations, we use a marked concatena-
tion closure of a context-free language: let
L be the context-free language W ( • W )n−1,
whose inverse homomorphims h−1(L) is also a
marked concatenation closure of a context-free
language.

The set of encoded digraphs is now given as
LDIGRAPH = h(h−1(L) ∩ D) = L ∩ h(D).

Lemma 6.2. The subset of the encoded di-
graphs LDIGRAPH, where the number of brack-
ets per vertex is bounded by k, is context-free.

Proof. We start from the CS style representa-
tion (the proof of lemma 6.1) for LDIGRAPH
and replace the context-free language L, with
a regular approximation L<k = W<k( • W<k)

∗

where W<k is a finite subset of W restricted
to contain at most k nested brackets in the
strings. This gives a more prototypical CS rep-
resention LDIGRAPH,k = h(h−1(L<k) ∩ D) =
L<k ∩h(D), which yields a context-free subset
of LDIGRAPH.

Lemma 6.3. The subset of encoded graphs
LDIGRAPH, where the rope thickness of the en-
coded digraphs is bounded by t, is regular.

Proof. As the rope thickness is bounded by t,
the number of brackets per vertex is bounded
by 2t. Thus, we start from the CS style rep-
resentation (the proof of Lemma 6.2) for en-
coded graphs where the number of brackets
per vertex is bounded. By the bound t for

the rope thickness, we replace the context-free
language D with a regular subset Dt ⊂ D
that can contain t levels of nested brackets.
The 2t, t-bounded set of encoded graphs is
given by LDIGRAPH,2t,t = h(h−1(L<2t)∩Dt) =
L<2t ∩h(Dt). By the closure properties of reg-
ular languages, LDIGRAPH,2t,t is regular.

7 Evidence for Linguistic Relevance

To assess the linguistic relevance of the cur-
rently presented encoding, we carried out
a small experiment where we computed the
rope-thickness of dependency trees in the Uni-
versal Dependencies v 2.4 treebanks (Nivre
et al., 2019). The compacted results are pre-
sented in Table 2. The results indicate that
a very high proportion of the observations is
captured when rope-thickness is 4 or higher.

According to our preliminary experiments
on graph banks, a very similar distribution of
rope-thickness is observed in more general an-
notation graphs.

8 Discussion

Among the earliest encoding schemes for
graphs are the Prüfer sequences for labeled
trees (Prüfer, 1918) that have been extened to
DAGs (Steinsky, 2003). More recently, Turán
(1984) introduced the problem of graph rep-
resentation given an adjacency matrix. There
are now some efficient representations for un-
labled and labeled graphs (Turán, 1984; Naor,
1990; Farzan and Munro, 2013). Our repre-
sentation for digraphs is also efficient: it has a
cubic-time encoder and a linear-time decoder.

The currently presented encoding for di-
graphs is a generalisation of an earlier rep-
resentation (Yli-Jyrä, 2017, 2019) that is it-
self an optimized alternative for the balanced
bracketing proposed for weighted dependency
parsing in (Yli-Jyrä, 2012). Several edge-
weighted parsing algorithms have been pre-
sented earlier (Dixon et al., 1992; Charniak
et al., 1998; Sasano et al., 2000; Kuhlmann and
Jonsson, 2015), but these newer methods ap-
ply to up to 50 families of dependency graphs
and the currently presented encoding is ex-
pected to help in their generalization. It would
be also interesting to study how rope graphs
relate to 1-endpoint crossing graphs (Pitler
et al., 2013; Kurtz and Kuhlmann, 2017).
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language trees rope-thickness 1 2 3 4 5 6 7 8
Arabic 28,402 4.9% 20.5% 63.5% 94.0% 99.64% 99.986% 100.000% 100.000%
Czech 127,507 13.3% 48.3% 89.3% 98.8% 99.91% 99.992% 100.000% 100.000%
Dutch 20,735 21.3% 63.4% 92.9% 98.9% 99.92% 99.986% 100.000% 100.000%
English 34,601 15.6% 54.9% 92.3% 99.3% 99.98% 99.997% 100.000% 100.000%
Finnish 34,641 37.0% 78.7% 96.8% 99.6% 99.97% 99.994% 100.000% 100.000%
German 191,757 10.1% 49.2% 90.5% 99.2% 99.96% 99.997% 100.000% 100.000%
Hindi 19,545 2.9% 44.4% 85.3% 98.3% 99.87% 99.980% 100.000% 100.000%
Italian 34,057 5.6% 49.9% 90.3% 98.8% 99.89% 99.997% 100.000% 100.000%
Korean 34,702 15.5% 65.6% 94.7% 99.5% 99.95% 99.994% 100.000% 100.000%
Latvian 12,558 12.7% 50.0% 89.8% 98.8% 99.90% 99.992% 99.992% 100.000%
Russian 87,377 15.0% 55.5% 90.7% 98.9% 99.91% 99.994% 99.999% 100.000%
Chinese 18,628 46.1% 73.7% 91.9% 98.6% 99.89% 99.989% 100.000% 100.000%
all 83 languages 1,232,262 15.1% 54.8% 90.5% 99.0% 99.93% 99.995% 100.000% 100.000%

Table 2: The cumulative coverage of bounded rope-thickness in the UD v2.4 dataset from which we
purged the trees containing ellipsis.

The languages of encoded graphs have ap-
plications to constrained graph enumeration
problems. Hoppe and Petrone (Hoppe and
Petrone, 2016) have exhaustively enumerated
all simple, connected graphs of a finite order
and computed a selection of invariants over
the sets in order to discover and add 141 new
integer sequences to the Online Encyclope-
dia of Integer Sequences (OEIS). Our previ-
ous encoding scheme (Yli-Jyrä and Gómez-
Rodríguez, 2017) gave context-free characteri-
sations for some graph properties. This led to
the discovery of dozens of known and new in-
teger sequences by graph enumeration. These
new computational methods complement the
research that spans from the “Abzählsatz” of
(Pólya, 1937) to more recent work on graph
enumeration (Wormald, 1979; Mckay, 1983;
Kapoor and Ramesh, 2000; Acuña et al., 2012;
Conte et al., 2018; Equi et al., 2019).

The language LDIGRAPH is not only context-
sensitive but even an indexed language (Aho,
1968): it is possible to construct an in-
dexed grammar that generates the same set
of strings. However, the existence of a sim-
ple transition system, a finite representation,
and a finite indexed grammar for the encoded
digraphs should not be confused with condi-
tion under which digraphs themselves become
finitely generated. Ogawa (2004) has pre-
sented a complete, infinite set of generators for
the graphs. We also need an infinite set of gen-
erators for the language LDIGRAPH, because
the the paths that take the transition system
from one final configuration to another final
configuration constitute an infinite set of code
words over which the encoded digraphs are
generated. This set remains infinite even for
digraphs with bounded rope thickness, but the
context-free and regular subsets of LDIGRAPH

may have some other ways to motivate finite
algebraic axiomatisations.

9 Conclusion
This paper contributes to the research on
graph representations (Turán, 1984) by de-
veloping a linear-time decodable encoding
for arbitrary labeled digraphs that we pre-
ferred to call ordered digraphs. The partic-
ular design of our linear encoding is moti-
vated by the success of similar representations
(Yli-Jyrä, 2005, 2012; Yli-Jyrä and Gómez-
Rodríguez, 2017) in the characterisations of
several families of noncrossing digraphs and
by the effectiveness of the recently improved
representation (Yli-Jyrä, 2017, 2019). Evi-
dently, both kinds of graph representations
have potential applications in graph enumer-
ation (Yli-Jyrä and Gómez-Rodríguez, 2017)
and weighted Chomsky-Schützenberger pars-
ing (Yli-Jyrä, 2005, 2012; Hulden, 2009; Yli-
Jyrä and Gómez-Rodríguez, 2017; Ruprecht
and Denkinger, 2019).

More specifically, the paper contributes a
general transition system that decodes arbi-
trary digraphs from linear action sequences.
Crucial notions – the proper rope cover (PRC)
and the related rope decomposition – are de-
fined and used in this transition system. The
first PRC-based measure for the complexity
of the graphs is introduced. Context-free and
regular approximations of the encoded graphs
are defined and shown to contain the depen-
dency annotations of the UD 2.4 treebanks.
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