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Abstract

We propose a formal model for translating
unranked syntactic trees, such as dependency
trees, into semantic graphs. These tree-to-
graph transducers can serve as a formal ba-
sis of transition systems for semantic parsing
which recently have been shown to perform
very well, yet hitherto lack formalization. Our
model features “extended” rules and an arc-
factored normal form, comes with an efficient
translation algorithm, and can be equipped
with weights in a straightforward manner.

1 Introduction

In dependency semantic parsing, one is given a
natural language sentence and has to output a
directed graph representing an associated, most-
likely semantic analysis. Semantic parsing in-
tegrates tasks that have usually been addressed
separately in statistical natural language process-
ing, such as named entity recognition, word sense
disambiguation, semantic role labeling, and co-
reference resolution. Semantic parsing is currently
receiving considerable attention, as attested by the
number of approaches being proposed for its solu-
tion (Oepen et al., 2014, 2015) and by the variety
of existing semantic representations and available
datasets (Kuhlmann and Oepen, 2016).

A successful approach to dependency semantic
parsing by Wang et al. (2015b,a) first parses the
input sentence into a dependency tree t, and then
applies a transition-based algorithm that translates
t into a dependency graph in Abstract Meaning
Representation (AMR), a popular semantic repre-
sentation developed by Banarescu et al. (2013). In
this work, we present a finite-state transducer for
tree-to-graph translation that can serve as a mathe-
matical model for transition-based systems such as
the one by Wang et al. (2015b) and, more in gen-
eral, for work on the syntax-semantics interface.

Bottom-up tree transducers (Thatcher, 1973)
have gained significant attention in the field of ma-
chine translation, where they are used to map syn-
tactic phrase structure trees from source to target

languages. This holds in particular for their “ex-
tended” version, which may process, in a single
step, sections of the input consisting of several
symbols; see (Maletti et al., 2009) and references
therein. We propose a similar formalism for de-
pendency semantic parsing, mapping syntactic de-
pendency trees into directed graphs that represent
the associated semantic interpretation.

When translating dependency trees into graphs
in a bottom-up fashion, we face two problems.
Firstly, bottom-up tree transducers process ranked
trees, i.e., the number of children at each node is
bounded by some constant. Thus, typically, these
tree transducers use a single rule to process in one
shot a node along with all of its (previously pro-
cessed) children in the source tree. In contrast,
in the case of dependency trees there is no global
constant that limits the number of children a node
may have, and processing all of the children by
means of a single rule is problematic.

Secondly, in an output tree of a bottom-up tree
transducer, nodes that are located near one another
are translations of nodes in a source tree that are in
close proximity as well. This condition is often re-
ferred to as locality. Locality does no longer hold
true when translating trees into graphs. In fact,
so-called reentrancy nodes in a graph have sev-
eral parents, which are translations of nodes in the
source tree whose distance from one another may
not be bounded by a constant. Reentrancies thus
require some form of nonlocal processing, gener-
ally not found in tree transducers.

The main contribution of this work is a finite-
state tree-to-graph transducer that processes de-
pendency trees in a bottom-up, left-to-right fash-
ion. Our solution to the two problems mentioned
above is rather simple. Each node is processed to-
gether with its children in several translation steps
which consume the children left to right. Fur-
thermore, in order to implement reentrancy, each
translated subtree produces a graph annotated with
a record of selected vertices, to be made accessible
later in the translation process.
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While our transducers use extended translation
rules in the sense of Maletti et al. (2009), they can
be cast in a simple normal form, facilitating algo-
rithmic processing. We provide a polynomial time
algorithm for translating an input dependency tree
into a packed graph forest, from which each trans-
lation graph can efficiently be recovered.

Related work. Bottom-up tree-to-graph trans-
ducers were introduced by Engelfriet and Vogler
(1994, 1998) who based their work on hyperedge
replacement. Since the graph construction mech-
anism we use is equivalent to hyperedge replace-
ment, our notion of tree-to-graph transducers is es-
sentially an unranked and extended generalization
of theirs, except for the fact that ours cannot cre-
ate multiple copies of unbounded material in the
input. This ability seems inappropriate for model-
ing natural language semantics.

The system by Wang et al. (2015b) has in-
spired our work. A technical comparison between
their formalism and ours is made in Remark 1.
An alternative approach to the syntax-semantics
interface exploits multi-component synchronous
tree-adjoining grammars; see Nesson and Shieber
(2006) and references therein. However, these for-
mal models yield tree-like semantic representa-
tions, as opposed to general graphs.

A common approach in semantic parsing is
to extend existing syntactic dependency parsers
to produce graphs, realizing translation models
from strings to graphs, as opposed to the tree-
to-graph model investigated here. On this line,
transition-based, greedy parsers have been adapted
by Ballesteros and Al-Onaizan (2017), Damonte
et al. (2017), Hershcovich et al. (2017), Peng et al.
(2018) and Vilares and Gómez-Rodrı́guez (2018).
Despite the fact that the input is a bare string, these
systems exploit features obtained from a precom-
puted run of a dependency parser, thus committing
to some best parse tree, similarly to the pipeline
model of Wang et al. (2015b). Dynamic pro-
gramming parsers have also been adapted to pro-
duce graphs by Kuhlmann and Jonsson (2015) and
Schluter (2015). Semantic translation from strings
to graphs is further investigated by Jones et al.
(2012) and Peng et al. (2015) using synchronous
hyperedge replacement grammars, who provide
unsupervised learning algorithms for grammar ex-
traction. Finally, Groschwitz et al. (2018) use
a neural supertag parser to map a string into a
dependency-style tree representation of the com-

positional structure of the corresponding AMR
graph. More precisely, this tree is a term in a spe-
cial algebra: its constants denote lexicalized AMR
graph fragments, which are combined into larger
and larger AMR graphs by two binary algebraic
operations for graph combination. These opera-
tions supply a partial AMR graph either with an
argument or with a modifier. The evaluation of the
term then yields the output AMR for the input sen-
tence. The tree-to-graph mapping is entirely deter-
ministic, in contrast to our approach. Groschwitz
et al. (2018) also provide an unsupervised align-
ment algorithm that extracts rules from semantic
graph banks.

2 Preliminaries

In this section we introduce the notation and ter-
minology that is used throughout this paper.

General Notation. The set of natural numbers
(including zero) is denoted by N, and N+ = N \
{0}. For n ∈ N the set {1, . . . , n} is abbreviated
to [n]. In particular, [0] = ∅. The set of all finite
sequences of elements of a set S is written S∗, ε
is the empty sequence, S+ = S∗ \ {ε}, and 2S is
the powerset of S. Given a sequence w, we write
[w] for the set of its elements. Concatenation of
sequences s, s′ is denoted by juxtaposition or, if
preferred for notational clarity, as s · s′.

Trees. Let Σ be an alphabet. The set TΣ of (un-
ranked) trees over Σ is the smallest set such that,
for all f ∈ Σ and t1, . . . , tn ∈ TΣ (n ∈ N), we
have f(t1, . . . , tn) ∈ TΣ. In particular f(), which
we abbreviate by f , is in TΣ.

The nodes of a tree are identified by their Gorn
addresses, which are sequences in N∗+: the root
has the address ε, and if α is the address of a
node in ti then iα is the address of that node in
f(t1, . . . , tn). The set of all nodes of t isN(t) and
the size of t is |t| = |N(t)|.

The label of node α in t is t(α), and the sub-
tree rooted at node α is t/α. For Σ′ ⊆ Σ, the
set of all nodes α ∈ N(t) with t(α) ∈ Σ′ is de-
noted by NΣ′(t). Throughout the paper, a subset
{α1, . . . , αk} of the set of nodes of a tree t is de-
noted as (α1, . . . , αk) to express that its nodes are
listed in lexicographic order.

The following notion will play a crucial role in
the definition of the translation step for our trans-
ducers in Section 3. Let 2 6∈ Σ be a special sym-
bol. A context is a tree c ∈ TΣ∪{2} that contains
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exactly one occurrence of 2, and this occurrence
is a leaf. Given such a context and a tree t, we
let c[t] denote the tree obtained from c by replac-
ing 2 with t. Thus, c[t] = t if c = 2, and oth-
erwise c[t] = f(s1, . . . , si−1, si[t], si+1, . . . , sn),
where c = f(s1, . . . , sn) and si ∈ TΣ∪{2} is the
context among s1, . . . , sn. For contexts c 6= 2,
the notation c[t] is straightforwardly extended to
c[t1, . . . , tk] for trees t1, . . . , tk (k ∈ N). It yields
the tree obtained by inserting the sequence of sub-
trees t1, . . . , tk at the position marked by 2. (This
yields a tree since we only use it if c 6= 2.) To
be precise, if c = f(s1, . . . , sn) and i ∈ [n] is the
index such that 2 occurs in si, then c[t1, . . . , tk] is
equal to f(s1, . . . , si−1, t1, . . . , tk, si+1, . . . , sn)
if we have si = 2; otherwise, it is f(s1, . . . , si−1,
si[t1, . . . , tn], si+1, . . . , sn).

Graphs. The translation process we propose as-
sembles the output graph by combining smaller
graphs into larger ones in a stepwise fashion. For
this, every graph has a designated group of ver-
tices, called ports. In the assembly step, ports from
the graphs to be combined can be merged.

For a given alphabet ∆, the set G∆ of graphs
with labels in ∆ consists of all quintuples G =
(V,E, lab, port) such that

1. V is a finite set of vertices,
2. E ⊆ V ×∆× V is the set of labeled edges,
3. lab : V → ∆ is a function labeling each ver-

tex, and
4. port ∈ V ∗ is a sequence of pairwise distinct

vertices called ports.
The size of G is |G| = |V | + |E|. If port =

v1 · · · vn, then the p-th port vp of G, p ∈ [n], is
denoted by port(p) and type(G) = |port | is the
type of G. If the components of G are not explic-
itly named, they are denoted by VG,EG, labG, and
portG, respectively. To keep the notation simple,
we do not use separate sets for the labels of ver-
tices and edges. Such a distinction may of course
be added by partitioning ∆ into two sets, but for
the present paper this is unnecessary.

3 Bottom-Up Unranked Tree-to-Graph
Transducers

Informally, our transducers process the input tree
in a locally bottom-up, left-to-right manner. To
apply a translation rule with a left-hand side s
at a given node α, s must cover α together with
k ≥ 0 of its leftmost subtrees. Hence, these sub-
trees must have been processed earlier, to the ex-

α

. . . . . .

left-hand side

Figure 1: Rule application at node α is locally leftmost
(any number, including zero, of the leftmost children
of α are consumed) and bottom-up (the left-hand side
covers those subtrees all the way down to the leaves).
The result of applying a rule at α deletes the subtrees
covered by the left-hand side and turns the label of α (a
state or input symbol) into a state q.

tent necessary to make the part to be processed
identical to s. Applying the rule then removes the
subtrees and turns α into a state (or turns it from
one state into another, if it already was a state due
to an earlier step). Disregarding for the moment
the partial output graphs involved, this is depicted
schematically in Figure 1.

Note that, in particular, the number k of pro-
cessed children can be zero, which means that sin-
gle nodes can initially be turned into states by
translation rules whose left-hand sides consist of
just one node. More generally, rules in which the
root of the left-hand side is an input symbol (with
or without children) can be viewed as initializing
the processing of the remaining children of that
node by turning their parent into an “initial” state.

An (unranked, linear, nondeleting) bottom-up
tree-to-graph transducer (briefly t2g transducer)
is a tuple Θ = (Σ,∆, Q,R, µ, F ) consisting of

1. finite input and output alphabets Σ and ∆;
2. a finite set Q of states disjoint with Σ, where

every state q ∈ Q has a type type(q) ∈ N;
3. a finite setR of translation rules defined below;
4. a merging function µ : 2∆ \ {∅} → ∆; and
5. a set F ⊆ Q of final states.

Note that the merging function is finite (because
∆ is). It allows us to determine the label of a ver-
tex obtained by merging vertices with different la-
bels. We do not place any restrictions on µ, but
consider it as an unknown function that is to be
learnt from data. However, it is reasonable to as-
sume that in linguistic settings, µwill be generated
by a binary function in the sense that µ({δ}) = δ
and µ(∆′ ∪ {δ}) = µ({µ(∆′), δ}) for all δ ∈ ∆
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and ∆′ ∈ 2∆ \ {∅}. Thus, in this case µ can be
efficiently represented by a table of size |∆|2.

As already mentioned, a translation rule reads a
tree fragment of the input, say φ, replaces it with
a single node labeled by a state, and produces as
output some graph fragment φ′. The tree φ cannot
be a single node labeled by a state: see Section 7
for discussion of this restriction. Some nodes α
within φ may be labeled by a state. This means
that the input tree has already undergone some par-
tial processing, at the position corresponding to
α, resulting in an output graph fragment which is
“associated” with α. Finally, the graph fragment
φ′ produced by the translation rule is obtained by
combining the graph fragments associated with
the nodes within φ labeled by a state, in some way
which is specified by the right-hand side of the rule
itself. Formally, a translation rule s → 〈q,G〉
consists of a left-hand side s ∈ TΣ∪Q \ Q and a
right-hand side 〈q,G〉, where q ∈ Q and G is a
graph with type(G) = type(q). Further, G must
fulfill the following condition: if P = {α:p | α ∈
NQ(s), p ∈ [type(s(α))]} then G ∈ G∆∪(2P \{∅})
and every α:p ∈ P occurs at most once in the la-
bels of vertices in G. A vertex v carrying a label
in 2P \{∅} is called a docking vertex. Intuitively,
each α:p ∈ labG(v) is a syntactic name (or formal
parameter) referring to the p-th port of the graph
Gα associated with the node matched by α. Dur-
ing the application of the rule, the p-th port of Gα
will be merged with v. This is formalized next.

A configuration of Θ is a pair 〈t,Γ〉 with
t ∈ TΣ∪Q such that Γ: NQ(t) → G∆, where
type(Γ(α)) = type(t(α)) for every α ∈ NQ(t).
Given an input tree t0 ∈ TΣ, the computation of
a transducer starts with 〈t0,Γ0〉 where Γ0 is the
function with the domain NQ(t0) = ∅. Suppose
inductively that, after some computation steps, a
configuration 〈t,Γ〉 has been reached. A transla-
tion rule s→ 〈q,G〉 can be applied to this config-
uration if t can be written as t = c[f(t1, . . . , tn)],
such that s = f(t1, . . . , tk) for some k ≤ n. If so,
let α be the node in c such that c(α) = 2. Then
there is a computation step 〈t,Γ〉 →Θ 〈t,Γ〉 with
t = c[q(tk+1, . . . , tn)], where Γ is as follows:

1. For every node β ∈ NQ(t) \ {α}, if β is the
corresponding node in t, then Γ(β) = Γ(β).1

1Here, the node corresponding to β is defined in the ob-
vious way, to take care of the change of Gorn addresses that
results from the deletion of t1, . . . , tk: if β = αiγ (i ∈ N+),
then its corresponding node in t is α(k + i)γ. If α is not a

2. Γ(α) is obtained as follows:

First, take the disjoint union of G and all graphs
Γ(αβ), β ∈ NQ(s), the ports of the resulting
graph being those of G.

Second, for every docking vertex v ∈ VG,
if labG(v) = {β1:p1, . . . , βm:pm}, then
merge v with all vi = portΓ(α·βi)(pi) for
i ∈ [m] and label the merged vertex by
µ({labΓ(α·β1)(v1), . . . , labΓ(α·βm)(vm)}).

Example 1 Consider the sentence “The emperor
loves, respects, and fears himself.” A simplified
Universal Dependencies parse tree of the sentence
is shown leftmost in Figure 2. Here, we have re-
moved the “and” node as well as the additional
root node above the “loves” node. Further, the
edge labels in the tree should be considered as in-
termediate nodes (since our trees, for simplicity,
and in contrast to graphs, do not have edge labels).
The figure shows how a t2g transducer may turn
the tree into a semantic graph akin to AMR.

In Step 1 we assume for the sake of illustra-
tion that the learning algorithm has seen the left-
most path of the tree (“The emperor loves”) of-
ten enough to construct an individual (“extended”)
translation rule for it, and that it has also learned
that the emperor referred to is usually Julius. Thus,
the translation rule

loves(nsubj(emperor(det(The))))→ 〈q0, G0〉

turns node “loves” into the state q0 and its first de-
pendent vanishes. The pair 〈q0,Γ(ε)〉 = 〈q0, G0〉
is illustrated by a dashed box with Γ(ε) shown in-
side. The numbers next to the vertices indicate the
ports. Thus, all three vertices are ports. Note that
the rule, for illustration purposes, anticipates the
existence of a direct object (or patient) of “love”,
but labels the corresponding node with a question
mark because the processed part of the tree does
not determine the argument.

In Step 2, we apply a translation rule of the form
q0(conj(respects)) → 〈qconj, G〉 to add two ver-
tices and four edges to the graph. The graph G in
the right-hand side is shown in Figure 3. The ports
of G become the ports of Γ(ε), and each of the
vertices labeled ε:p is merged with the p-th port of
G0 (i.e., of the Γ(ε) of the previous step).

Step 3 processes fears(dobj(himself)), turning
this subtree into a graph with two ports, with a

proper prefix of β, then the corresponding node is β itself.
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loves

emperor

The

respects fears

himself

nsubj
conj

conj

det dobj

→Θ

love
1

Julius 2 ?3

arg0 arg1

respects fears

himself

conj conj

dobj

q0

→Θ

and
1

love respect

Julius 2 ?3

arg0

arg1arg0

arg1

fears

himself

conj

dobj

qconj

→Θ

and
1

love respect

Julius 2 ?3

arg0

arg1arg0

arg1

fear
1

himself 2

arg0 arg1

conj

qconj

q1

→Θ

and

love respect fear

Julius

arg0 arg1

arg0 arg1

arg0 arg1

qf

Figure 2: Computation of a t2g trans-
ducer applied to the Universal Dependen-
cies parse tree of “The emperor loves, re-
spects, and fears himself.”

and
1

{ε:1} respect

{ε:2} 2 {ε:3}3

arg0 arg1

Figure 3: The graph G used in the translation rule
q0(conj(respects))→ 〈qconj, G〉 of Step 2.

reentrancy caused by the semantics of “himself”.
Note that, similarly to Step 1, it is still unclear
at this stage which entity “himself” refers to, so
we assume that the rule just keeps it. It may be
instructive to note that Step 3 is independent of
Steps 1 and 2, hence it could just as well have been
executed at the very beginning or in between these
two.

Finally, Step 4 combines the two graphs by

{ε:1}

{1:1}

{ε:2, ε:3, 11:2}

Figure 4: The graph H used in the translation rule
qconj(conj(q1))→ 〈qf , H〉 of Step 4.

applying a rule of the form qconj(conj(q1)) →
〈qf , H〉. The graph H (shown in Figure 4) con-
tains a vertex with label {ε:2, ε:3, 11:2}, causing
the vertices labeled “Julius”, “?”, and “himself” to
be merged. The function µ determines the label of
the merged node. Here, we assume that µ gives
proper names precedence over pronouns, which in
turn take precedence over “?”.
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Remark 1 The transition-based system of Wang
et al. (2015b) and subsequent versions translate
dependency trees to AMR by visiting nodes and
dependency arcs of the input tree bottom-up and
left-to-right. At each node or arc, it greedily ap-
plies one out of eight alternative actions, turning
the tree into a graph. Six actions are local, mean-
ing that they involve nodes at a close distance in
the input tree. These include node or arc rela-
belling, reversing arc directions, deleting a node,
and deleting an arc by merging its two nodes. Each
of these actions can easily be captured by some in-
dividual translation rule of a t2g transducer.

Two remaining actions are nonlocal: one reat-
taches a node and the other creates a new arc to
form a reentrancy. These actions are restricted to
local actions for efficiency reasons (Wang et al.,
2015b, Section 3.2), so reattachment attaches to
the grandparent or great grandparent, and reen-
trancy involves sibling nodes only. While t2g
transducers can simulate reattachment, a major
difference between the two models lies in the cre-
ation of reentrancies, as discussed below.

Wang’s system can repeatedly apply the reen-
trancy action, turning for instance n sibling nodes
into a clique, for any n. This is not possible in our
model, since translation rules can create reentran-
cies only by accessing a fixed number of vertices
“remembered” as ports. We believe this restriction
to be linguistically adequate: while the repeated
use of conjunctions and modifiers can yield AMR
nodes with unbounded node degree, structures re-
sembling cliques of unbounded size would corre-
spond to an unbounded number of concepts, ar-
guments or modifiers, pairwise dependent on each
other. This does not appear to be a reasonable lin-
guistic pattern.

However, note that t2g transducers can imple-
ment a weak form of nonlocality by percolating
port nodes across any distance in the underlying
derivation tree, though not in any number. This
makes it possible to create reentrancies that extend
further than to sibling nodes. In terms of transla-
tion power, the two formalisms seem close to each
other in practice, but we conjecture that they are
formally incomparable.

Readers who are familiar with the concept of
hyperedge replacement may have noticed that, ex-
cept for the role of the merging function, the pro-
cess described in item 3 in the definition of →Θ

is just hyperedge replacement (where the replaced

hyperedges are kept implicit).
A configuration 〈t,Γ〉 is final if t ∈ F , i.e., if

the first component has been reduced to a single
state, which is final. For an input tree t0, the set
of all output graphs computed by Θ is denoted by
Θ(t0). It is the set of all graphs Γ(ε) such that
〈t0,Γ0〉 →∗Θ 〈t,Γ〉 for some final configuration
〈t,Γ〉. The transduction computed by Θ is the
set {(t, g) ∈ TΣ × G∆ | g ∈ Θ(t)}. The domain
language of Θ is {t ∈ TΣ | Θ(t) 6= ∅}.

We define the size of Θ to be the sum of the
sizes of its rules. The size of a rule is the size of the
tree in the left-hand side plus the size of the graph
in the right-hand side. This notion will be used in
the next sections for the computational analysis of
the algorithms we present.

4 Derivation Trees

In this section, we describe how a computation of
a t2g transducer Θ can be represented by means
of a tree over the alphabet R, the set of translation
rules of Θ. We call these trees derivation trees
of Θ. Derivation trees will be used in Section 6
to design efficient translation algorithms. We also
show that the derivation trees of Θ form a regular
tree language (and, in fact, even a local one).

Consider a computation γ of Θ that has the form
〈t0,Γ0〉 →+

Θ 〈q,Γ〉 with t0 ∈ TΣ and q ∈ Q. If
γ consists of a single step, then a translation rule
of the form r0 : t0 → 〈q,G〉 has been used. In this
case the derivation tree associated with γ, written
d(γ), is simply r0.

If γ consists of more than one step, assume that
at the last step of γ we have used a translation rule
r0 of the form s→ 〈q,G〉. We can then write γ as
〈t0,Γ0〉 →+

Θ 〈s,Γ′〉 →r0 〈q,Γ〉. Let γ′ denote the
first part 〈t0,Γ0〉 →+

Θ 〈s,Γ′〉 of the computation.2

We define rk(r0) = |NQ(s)| to be the rank of r0.
In the derivation tree d(γ), r0 has rk(r0) direct
subtrees. If NQ(s) = (α1, . . . , αrk(r0)), then the
i-th subtree of r0 corresponds to the sub-derivation
that ended in the state at αi. Accordingly, we pro-
ceed to split the input tree t0 into smaller pieces
on the basis of the node addresses αi.

In order to describe this thoroughly, we need to
determine a correspondence between nodes in s
and nodes in t0. Intuitively, s is a segment at the
top of t0 that extends to the right. To see this, ob-

2Recall that NQ(s) is the set of all nodes in s labeled by
states in Q, and that we write NQ(s) = (α1, . . . , αrk(r0)) to
indicate that α1, . . . , αrk(r0) are listed in lexicographic order.
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t0

s

Figure 5: Schematic illustration of the part s of an in-
put tree t0 which is left after some computation steps.
(Note that this is only a structural illustration; some of
the node labels in s are not the same as in t0 anymore,
but have been replaced with states.)

serve that the root ε of s corresponds to the root of
t0. Some of the children of ε in t0 may have been
consumed by γ′ and thus are no longer present in
s. However, this happens strictly from left to right.
Therefore, if a child of ε in t0 is still present in s,
then all of its siblings to the right are still present,
too. The same pattern continues recursively at the
children of these nodes in s. The situation is illus-
trated schematically in Figure 5.

Formally, for a node α ∈ N(s) we define the
pre-image α ∈ N(t0) of α inductively over the
structure of s, as follows:

1. ε = ε.
2. Assume that α · 1, . . . , α · k ∈ N(s) are the

children of a node α in s. Then it should
be clear that the children of α in t0 are α ·
1, . . . , α · n for some n ≥ k. We would like
to identify the k-th last children of the preim-
age with the k children of the postimage, and
so we let α · i = α · (i+n−k) for all i ∈ [k].

For a set N ⊆ N(s) of node addresses, we let
N = {α | α ∈ N}.

We are now ready to split t0 into the subtrees
that, via the computation γ′, gave rise to the states
at α1, . . . , αrk(r0). We do this by defining the sets
Ni ⊆ N(t0) of their nodes, i ∈ [rk(r0)]. For each
i ∈ [rk(r0)], Ni is the set of all nodes β ∈ N(t0)
such that αi is the first node in N(s) that appears
on the path from β to the root of t0.

Thus, Ni consists of αi and those of its descen-
dants which are not in s anymore, i.e., which have
already been “consumed” by the computation γ′

in the process of producing node αi in s. For each
i ∈ [rk(r0)], define tree ti as the portion of tree t0
that is induced by the nodes in Ni.

For each i ∈ [rk(r0)], consider the translation
rules of γ′ that are applied to nodes in Ni. Clearly,
the restriction of γ′ to them yields a computa-
tion γi of the form 〈ti,Γ0〉 →+

Θ 〈s(αi),Γi〉 whose

length is at most the length of γ′ and thus less than
the length of γ. Let d(γi) be the derivation tree
associated with γi. Then we define the derivation
tree d(γ) to be r0(d(γ1), . . . , d(γrk(r0))).

The inductive procedure above associates a
unique derivation tree d(γ) with each computation
γ of Θ. Observe that each node of d(γ) has a la-
bel r ∈ R and a number of children rk(r). This
means that the set of derivation trees of Θ, writ-
tenD(Θ), is defined over a finite, ranked alphabet.
The set D(Θ) can be recognized by a bottom-up
finite-state tree automaton M , as follows.3 The
set of states of M is Q, with F being the subset
of accepting states. Its set of rules consists of all
r(q1, . . . , qk)→ q such that:

1. r : t→ 〈q,G〉 is a translation rule of Θ,
2. NQ(t) = (α1, . . . , αk), and
3. t(αi) = qi for all i ∈ [k].

Recall from Section 3 that the size of Θ is the sum
of the sizes of its translation rules. We can easily
construct rule r(q1, . . . , qk)→ q of M in time lin-
ear in the size of r. Hence, M can be constructed
in time (and space) linear in the size of Θ.

Given a derivation tree dt ∈ D(Θ), such that
dt = r(dt1, . . . , dtk), we can compute its input
tree in(dt) and its output graph out(dt) recur-
sively, as follows. Suppose the root r of dt is
the translation rule r : t → 〈q,G〉 with NQ(t) =
(α1, . . . , αrk(r)).
1. If ti = in(dt i) for all i ∈ [k], then in(dt) is

obtained from t and t1, . . . , tk by fusing each
node αi with the root of ti and making ti(ε) the
label of the fused node. The subtrees of ti are
added to the left of the leftmost subtree of αi in
t. (If αi is a leaf, ti just replaces αi.)

2. If Gi = out(dt i) for all i ∈ [k], then the graph
out(dt) is obtained from the disjoint union of
G and G1, . . . , Gk by merging each docking
vertex v ∈ VG with ports in G1, . . . , Gk, as
follows: if labG(v) = {αi1 :p1, . . . , αim :pm},
then v is merged with all vj = portGij

(pj),
j ∈ [m], and the resulting vertex is labeled by
µ({labGi1

(v1), . . . , labGim
(vm)}).

Note that the definition of out(dt) simply re-
iterates the way in which computations are defined
to construct output graphs. As a consequence, it is
a straightforward task to show that dt = d(γ) for
a computation γ that consumes in(dt) and yields
the output graph out(dt).

3For bottom-up tree automata, see e.g. (Comon et al.,
2002, Chapter 1).
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Finally, let ρ be the size of the largest translation
rule used in dt . It is not difficult to see that, follow-
ing the recursive procedure above, both in(dt) and
out(dt) can be constructed in time O(ρ · |dt |).

5 Arc-Factored Normal Form

Extended left-hand sides are convenient for spec-
ifying transducers, but in order to prove formal
properties about transducers or implement algo-
rithms based on them, it is useful to express the
transition rules in a more restricted normal form.
The normal form introduced in this section pro-
cesses a tree by first turning every node into a
state, and then by visiting the individual arcs of
the tree one at each step. A translation rule is in
arc-factored normal form if its left-hand side is
in Σ or has the form q(q′) where q, q′ ∈ Q. A t2g
transducer is in arc-factored normal form if each of
its translation rules is in arc-factored normal form.

We now show that every t2g transducer Θ can
effectively be transformed into a t2g transducer
in arc-factored normal form which computes the
same transduction. First, introduce a new state qf
of type 0 for every f ∈ Σ that occurs in the left-
hand side of some translation rule, add the rule
f → 〈qf , ∅〉 (where ∅ denotes the empty graph),
and replace f by qf in the left-hand sides of all
original rules. Clearly, the computed transduc-
tion remains the same and all rules which violate
the condition of the arc-factored normal form have
left-hand sides in TQ.

Now, we split rules with large left-hand sides
into smaller ones. As long as the transducer is not
in arc-factored normal form, select any translation
rule s → 〈q,G〉 such that |s| > 2. Then s has
the form c[q1(q2, t1, . . . , tn)] for some context c,
states q1, q2, and trees t1, . . . , tn (n ≥ 0). If k =
type(q1) and ` = type(q2), we decompose the
translation rule into two rules, namely q1(q2) →
〈q1;2, H〉 and c[q1;2(t1, . . . , tn)]→ 〈q,G′〉, where
q1;2 is a fresh state with type(q1;2) = k + `.

The intermediate graph H consists of k+ ` iso-
lated vertices u1, . . . , uk, v1, . . . , v` with portH =
u1 · · ·ukv1 · · · v` and, for all i ∈ [k] and j ∈ [`],
labH(ui) = ε:i and labH(vj) = 1:j. The effect of
this translation rule is to take the disjoint union of
the graphs associated with the two nodes, concate-
nating the port sequences.

The graph G′ is obtained from G by appropri-
ately renaming the references of the form α·1:p
where α is the address of 2 in c: for every p ∈ [`],

if α·1:p occurs in a label of a vertex in G, then it
is replaced by α:(`+ p). Moreover, in every label
each port reference of the form α·i:p for i > 1 is
replaced by α·(i− 1):p.

It should be clear that the two translation rules,
executed one after the other, have precisely the
same effect as the original one. This completes
the proof of the arc-factored normal form.

Note that the size increase implied by the pre-
ceding construction is modest. More precisely,
each rule will be decomposed into as many rules
as there are arcs in the original left-hand side, and
the size of graphs in the right-hand sides of in-
termediate translation rules is at most twice the
largest type τ of states in Q. Hence, the to-
tal size of the new rules replacing s → 〈q,G〉
is O(|s| · τ + |G|). More sophisticated construc-
tions can result in a smaller transducer. A rather
simple optimization is to drop all ports from the
discrete graph H which do not occur in G, and to
identify those referenced in the label of the same
docking vertex. We do not further pursue this here.

6 Translation into a Packed Forest

Given a transducer Θ = (Σ,∆, Q,R, µ, F ) and an
unranked tree t, we construct a suitable represen-
tation for the set of all graphs that are translations
of t under Θ. We solve the problem in two steps,
specified below. To simplify the presentation, we
assume Θ is in arc-factored normal form.

6.1 Grounding

The first step annotates every occurrence of a sym-
bol in t with its address, yielding t̂, and constructs
a new t2g transducer Θt = (Σ′,∆, Q′, R′, µ, F ′)
with domain language {t̂} and output graphs that
are the translations of t by Θ. Let N(t̂) = N(t)
and t̂(α) = t(α)α for all α ∈ N(t). We restrict the
domain language of Θ to the set {t̂}, in such a way
that the translation process of Θ is “preserved”.
We call this construction the grounding of Θ to t.
For this, let kα = min{i ∈ N+ | αi /∈ N(t)} for
every α ∈ N(t), i.e., kα is the number of children
of α plus one.
1. The input alphabet Σ′ consists of all symbols

appearing in t̂.
2. The set Q′ consists of all 〈q, α, i〉 such that
q ∈ Q, α ∈ N(t), and i ∈ [kα]. Intuitively,
α records the position in the tree and i is the
number of the next child to be consumed.

3. The set F ′ is {〈q, ε, kε〉 | q ∈ F}.
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4. For every translation rule f → 〈q,G〉 of Θ and
every α ∈ N(t) with t(α) = f , we include
fα → 〈〈q, α, 1〉, G〉 in R′.

5. For every translation rule q1(q2) → 〈q,G〉 of
Θ and every αi ∈ N(t) (i ∈ N+), we let
〈q1, α, i〉(〈q2, αi, kαi〉) → 〈〈q, α, i + 1〉, G〉 be
a translation rule in R′.

Note that the grounding algorithm above bears
close similarity with the notion of parsing by inter-
section, which makes use of the construction pro-
posed by Bar-Hillel et al. (1964) for producing a
context-free grammar that generates the intersec-
tion of the languages of a context-free grammar
and a finite-state (string) automaton. It should thus
be clear that Θt(ŝ) = ∅ for all s ∈ TΣ \ {t}, and
Θt(t̂) = Θ(t).

The construction of Θt can be carried out in
time proportional to the product of the sizes of Θ
and t. In practice, many of the translation rules
of Θt may be useless. It is possible to avoid this
by interleaving the construction of the translation
rules of Θt with a simulation of the process of
parsing by Θ on input t. This has the advantage
of pruning the construction, so that useless trans-
lation rules are filtered out.

6.2 Graph Forest

In the second step of our translation algorithm,
we construct a suitable representation of all the
graphs that are obtained in any translation of t
based on Θ. Using the t2g transducer Θt from the
previous step, we can apply the construction out-
lined in Section 4 and produce a bottom-up finite-
state tree automaton Mt whose language is the set
D(Θt) of all derivation trees of Θt. Together with
the interpretation of generated derivation trees dt
as out(dt) this yields the desired compact repre-
sentation of the set Θ(t) of graphs t translates into.
We therefore call Mt a graph forest for the trans-
lation of t under Θ.

One can now use standard algorithms to, e.g.,
generate the graphs of the form out(dt). Further,
if the rules of Θ are equipped with weights from
some weight structure, these weights carry over to
the rules of Mt in the obvious way. If we now
turn every such weighted rule r(q1, . . . , qk)→w q
of Mt into the weighted context-free string pro-
duction q →w r(q1, . . . , qk), where states become
nonterminal symbols, and rule names, parenthe-
ses and commas are viewed as terminal symbols,
we get an equivalent weighted context-free gram-

mar generating D(Θt) (where trees are viewed as
strings over the mentioned alphabet). One can
now apply Knuth’s generalization of Dijkstra’s
shortest paths algorithm (Knuth, 1977) to find the
best-scoring derivation tree inD(Θt), and thus the
“best” translation of t. As Knuth’s algorithm runs
in time O(n log n) in the size of the grammar, the
total time required by this process is O(m logm),
where m is the product of the sizes of Θ and t.

7 Discussion

We have developed a novel finite-state transducer
that implements nonlocal processing to translate
unranked dependency trees into general graphs for
semantic representation of natural language.

Our formalism is essentially a finite-state device
processing unranked trees in a bottom-up fash-
ion, following a well-assessed tradition in nat-
ural language processing. We remark that tree
preprocessing to convert unranked trees into bi-
nary trees, in the style of the stepwise tree au-
tomata of Martens and Niehren (2005), is not at-
tractive from a linguistic standpoint since it might
destroy the linguistic intuition underlying transla-
tion rules. Therefore, our solution to the problem
of processing unranked trees uses on-the-fly bina-
rization at each node. This solution was previously
adopted by the Z-automata of Björklund et al.
(2019), recognizing dependency trees. In fact, if
we remove the graph component from the right-
hand side of translation rules in t2g transucers, we
obtain Z-automata.

Our definition of translation rules forbids the
rewriting of single nodes labeled by a state. This is
done to avoid cycling on the same input node for
an unbounded number of steps. This ability would
make it possible to turn a single input tree into
infinitely many semantic graphs that can be arbi-
trarily larger than the input syntactic tree. Such a
model would not be linguistically adequate.

As already remarked, there is a deep similar-
ity between the definition of computation step in
t2g transducers and hyperedge replacement. In
fact a synchronous hyperedge replacement gram-
mar could easily simulate a t2g transducer.

The next step in this project is the development
of algorithms for unsupervised extraction of t2g
translation rules from semantic graph corpora.
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