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Abstract

Contextualized word embeddings derived
from pre-trained language models (LMs) show
significant improvements on downstream NLP
tasks. Pre-training on domain-specific cor-
pora, such as biomedical articles, further im-
proves their performance. In this paper,
we conduct probing experiments to determine
what additional information is carried intrinsi-
cally by the in-domain trained contextualized
embeddings. For this we use the pre-trained
LMs as fixed feature extractors and restrict
the downstream task models to not have ad-
ditional sequence modeling layers. We com-
pare BERT (Devlin et al., 2018), ELMo (Pe-
ters et al., 2018a), BioBERT (Lee et al., 2019)
and BioELMo, a biomedical version of ELMo
trained on 10M PubMed abstracts. Surpris-
ingly, while fine-tuned BioBERT is better than
BioELMo in biomedical NER and NLI tasks,
as a fixed feature extractor BioELMo outper-
forms BioBERT in our probing tasks. We use
visualization and nearest neighbor analysis to
show that better encoding of entity-type and
relational information leads to this superiority.

1 Introduction

NLP has seen an upheaval in the last year, with
contextual word embeddings, such as ELMo (Pe-
ters et al., 2018a) and BERT (Devlin et al.,
2018), setting state-of-the-art performance on
many tasks. These empirical successes suggest
that unsupervised pre-training from large corpora
could be a vital part of NLP models. In spe-
cific domains like biomedicine, NLP datasets are
much smaller than their general-domain coun-
terparts1, which leads to a lot of ad-hoc mod-
els: some infer through knowledge bases (Chandu

1For example, MedNLI (Romanov and Shivade, 2018)
only has about 11k training instances while the general do-
main NLI dataset SNLI (Bowman et al., 2015) has 550k.

et al., 2017), while others leverage large-scale gen-
eral domain datasets for domain adaptation (Wiese
et al., 2017). However, unlabeled biomedical texts
are abundant, and their full potential has perhaps
not yet been fully realized.

We train a domain-specific version of ELMo on
10M PubMed abstracts, called BioELMo2. Ex-
periments on biomedical named entity recogni-
tion (NER) dataset BC2GM (Smith et al., 2008)
and biomedical natural language inference (NLI)
dataset MedNLI (Romanov and Shivade, 2018)
clearly show the utility in training in-domain con-
textual word representations, but we would also
like to know exactly what extra information is car-
ried intrinsically in these embeddings.

To answer this question, we design two probing
tasks, one for NER and one for NLI, where contex-
tualized embeddings are used solely as fixed fea-
ture extractors and no sequence modeling layers
are allowed above the embeddings. This setting
prohibits the model from capturing task-specific
contextual patterns, and instead only utilizes the
information already present in the representations.
In parallel to our work of BioELMo, Lee et al.
(2019) introduce BioBERT, which is a biomedical
version of in-domain trained BERT. We also probe
BioBERT in our experiments.

Expectedly, BioELMo and BioBERT perform
significantly better than their general-domain
counterparts. When fine-tuned, BioBERT out-
performs BioELMo, however, when used as
fixed feature extractors, BioELMo is better than
BioBERT in our probing tasks. Visualizations
and nearest neighbor analyses suggest that it’s be-
cause BioELMo more effectively encodes entity-
types and information about biomedical relations,
such as disease and symptom interactions, than
BioBERT.

2Available at https://github.com/Andy-jqa/
bioelmo.

https://github.com/Andy-jqa/bioelmo
https://github.com/Andy-jqa/bioelmo
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2 Related Work

Embeddings from Language Models: ELMo
(Peters et al., 2018a) is a pre-trained deep bidirec-
tional LSTM (biLSTM) language model. ELMo
word embeddings are computed by taking a
weighted sum of the hidden states from each
layer of the LSTM. The weights are learned along
with the parameters of a task-specific downstream
model, but the LSTM layers are kept fixed. Re-
cently, Devlin et al. (2018) introduced BERT,
and they showed that pre-training transformer net-
works on a masked language modeling objective
leads to even better performance by fine-tuning
the transformer weights on a broad range of NLP
tasks. We study biomedical in-domain versions of
these contextualized word embeddings in compar-
ison to the general ones.

Biomedical Word Embeddings: Context-
independent word embeddings, such as word2vec
(w2v) (Mikolov et al., 2013) trained on biomedi-
cal corpora, are widely used in biomedical NLP
models. Some recent works reported better
NER performance with in-domain trained ELMo
than general ELMo (Zhu et al., 2018; Sheikhshab
et al., 2018). Lee et al. (2019) introduce BioBERT,
which is BERT pre-trained on biomedical texts
and set new state-of-the-art performance on
several biomedical NLP tasks. We reaffirm these
results on biomedical NER and NLI datasets with
in-domain trained contextualized embeddings,
and further explore why they are superior.

Probing Tasks: Designing tasks to probe sen-
tence or token representations for linguistic prop-
erties has been a widespread practice in NLP. In-
ferSent (Conneau et al., 2017) uses transfer tasks
to probe for sentence embeddings pre-trained on
supervised data. Many studies (Dasgupta et al.,
2018; Poliak et al., 2018) design new test sets
to probe for specific linguistic signals in sen-
tence rerpesentations. Tasks to probe for token-
level properties are explored by Blevins et al.
(2018); Peters et al. (2018b), where they test
whether token embeddings from different pre-
training schemes encode part-of-speech and con-
stituent structure.

Tenney et al. (2018) extend token-level prob-
ing to span-level probing and consider a broader
range of tasks. Our work is different from them in
the following ways – (1) We probe for biomedical
domain-specific contextualized embeddings and

compare them to the general-domain embeddings;
(2) For NER, instead of classifying the tag for a
given span, we adopt an end-to-end setting where
the spans must also be identified. This allows us
to compare the probing results to state-of-the-art
numbers; (3) We also probe for relational infor-
mation using the NLI task in an end-to-end style.

3 Methods

3.1 Biomedical Contextual Embeddings

BioELMo: We train BioELMo on the PubMed
corpus. PubMed provides access to MEDLINE,
a database containing more than 24M biomedical
citations3. We used 10M recent abstracts (2.46B
tokens) from PubMed to train BioELMo. The
statistics of this corpus are very different from
more general domains. For example, the token pa-
tients ranks 22 by frequency in the PubMed cor-
pus while it ranks 824 in the 1B Word Bench-
mark dataset (Chelba et al., 2013). We use the
Tensorflow implementation4 of ELMo to train
BioELMo. We keep the default hyperparameters
and it takes about 1.7K GPU hours to train 8
epochs. BioELMo achieves an averaged forward
and backward perplexity of 31.37 on test set.

BioBERT: In parallel to our work, Lee et al.
(2019) developed BioBERT, which is pre-trained
on English Wikipedia, BooksCorpus and fine-
tuned on PubMed (7.8B tokens in total). BioBERT
was initialized with BERT and further trained on
PubMed for 200K steps.5

To get fixed features of tokens, we use the learnt
downstream task-specific layer weights to calcu-
late the average of 3 layers (1 token embedding
layer and 2 biLSTM layers) for BioELMo and
13 layers (1 token embedding layer and 12 trans-
former layers) for BioBERT. As fixed feature ex-
tractors, BioELMo and BioBERT are not fine-
tuned by downstream tasks.

3.2 Downstream Tasks

We first use BioELMo with state-of-the-art mod-
els and fine-tune BioBERT on the downstream
tasks, to test their full capacity. In §3.3 we intro-
duce our probing setup which tests BioBERT and

3https://www.ncbi.nlm.nih.gov/pubmed/
4https://github.com/allenai/bilm-tf
5We note there is a difference in the size of training

corpora for BioBERT and BioELMo, but since we trained
BioELMo before BioBERT was available, we could not con-
trol for this difference.

https://www.ncbi.nlm.nih.gov/pubmed/
https://github.com/allenai/bilm-tf
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Premise: He returned to the clinic three weeks later and was 

prescribed with antibiotics. 

Hypothesis: The patient has an infection. 

Label: Entailment 

to treat 

Figure 1: Relation information in a MedNLI instance.

BioELMo as fixed feature extractors.
NER: For BioELMo, following Lample et al.

(2016), we use the contextualized embeddings and
a character-based CNN for word representations,
which are fed to a biLSTM, followed by a condi-
tional random field (CRF) (Lafferty et al., 2001)
layer for tagging. For BioBERT, we use the single
sentence tagging setting described in Devlin et al.
(2018), where the final hidden states of each token
are trained to classify its NER label.

NLI: For BioELMo, We use the ESIM model
(Chen et al., 2016), which encodes the premise and
hypothesis using biLSTM. The encodings are fed
to a local inference layer with attention, another
biLSTM layer and a pooling layer followed by
softmax for classification. For BioBERT, we use
the sentence pair classification setting described in
Devlin et al. (2018), where the final hidden states
of the first token (special ‘[CLS]’) are trained to
classify the NLI label for the sentence pair.

3.3 Probing Tasks

We design two probing tasks where the contextu-
alized embeddings are only used as fixed feature
extractors and restrict the down-stream models to
be non-contextual, to investigate the information
intrinsically carried by them. One task is on NER
to probe for entity-type information, and the other
is on NLI to probe for relational information.

NER Probing Task: As shown in Figure
2 (left), we embed the input tokens to R =
[E1;E2; ...;EL] ∈ RL×De , where L is the se-
quence length and De is embedding size. The em-
beddings are fed to several feed-forward layers:

Ẽi = FFN(Ei) ∈ RT

where T is the number of tags. [Ẽ1; Ẽ2; ...; ẼL]
is then fed to a CRF output layer. CRF doesn’t
model the context but ensures the global consis-
tency across the assigned labels, so it’s compatible
with our probing task setting.

NLI Probing Task: Relational information be-
tween tokens of premises and hypotheses is vital to
solve MedNLI task: as shown in Figure 1, the hy-
pothesis is an entailment because antibiotics are
used to treat an infection, which is a drug-disease

relation. We design the task shown in Figure 2
(right) to probe such relational information: We
embed the premise and hypothesis seperately to
P ∈ RL1×De and H ∈ RL2×De , where L1, L2 are
sequence lengths. Then we use bilinear layers6 to
get S = [S1;S2; ...;SR] ∈ RR×L1×L2 where

Sr = PWrH
T ∈ RL1×L2 ,

and Wr ∈ RDe×De is the weight matrix of a bi-
linear layer. Note that each element of Sr encodes
the interaction between a token from the premise
and a token from the hypothesis. We denote

hij =
[
S1[i, j] ... SR[i, j]

]T ∈ RR, (1)

as the distributed relation representation be-
tween token i in premise and token j in hypoth-
esis, and R is the tunable dimension of it. We then
apply an element-wise maximum pooling layer:

h̃ = max
i,j

hij ∈ RR.

We use a linear layer to compute the softmax
logits of the NLI labels, e.g. p(entailment) ∝
exp(h̃T went), where went is the learnt weight
vector corresponding to the entailment label.

For BERT, we probe two variants. The first,
denoted as BERT / BioBERT, feeds the premise
and hypothesis to the model separately. The sec-
ond, denoted as BERT-tog / BioBERT-tog, con-
catenates the two sentences by the ‘[SEP]’ token
and feeds to the model together to get the embed-
dings. This is how BERT is supposed to be used
for sentence pair classification tasks, but it’s not
comparable to ELMo in our setting since ELMo
doesn’t take two sentences together as input.

4 Experiments

4.1 Experimental Setup
Data: For the NER task, we use the BC2GM
dataset. BC2GM stands for BioCreative II gene
mention dataset (Smith et al., 2008). The task is
to detect gene names in sentences. It contains 15k
training and 5k test sentences. We also test on the
general-domain CoNLL 2003 NER dataset (Tjong
Kim Sang and De Meulder, 2003), where the task
is to detect entities such as person and location.

For the NLI task, we use the MedNLI dataset
(Romanov and Shivade, 2018), where the task is,
given a pair of sentences (premise and hypothesis),
to predict whether the relation of entailment, con-
tradiction, or neutral (no relation) holds between

6We also tried models without bilinear layers, which turn
out to be suboptimal.
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Figure 2: Left: NER probing task. The contextual word representations are directly used to predict the NER labels,
followed by a CRF layer to ensure label consistency. Right: NLI probing task. Bilinear operators map pairs of
word representations to relation representations which are used to predict the entailment label.

them. The premises are sampled from doctors’
notes in the clinical dataset MIMIC-III (Johnson
et al., 2016). The hypotheses and annotations are
generated by clinicians. It contains 11,232 train-
ing, 1,395 development and 1,422 test instances.
We also test on the general-domain SNLI dataset
(Bowman et al., 2015), where the premises and hy-
potheses are drawn from image captions.
Compared Settings: For each dataset, the Whole
setting refers to the state-of-the-art model we used
(described in §3.2), including contextual modeling
layers or fine-tuning of the embedding encoder.
Probing and Control settings describe the prob-
ing task model introduced in §3.3. The control set-
ting tests the representations on a general-domain
dataset/task, to check whether we lose any infor-
mation in domain-specific embeddings. Probing
and control results are averaged over three seeds.
Compared Embeddings: We compare: (1) non-
contextual biomedical w2v trained on a biomedi-
cal corpus of 5.5B tokens (Moen and Ananiadou,
2013), (2) ELMo trained on a general-domain cor-
pus of 5.5B tokens7, (3) BioELMo8, (4) Cased
base version of BERT trained on a general-domain
corpus of 3.3B tokens9 and (5) BioBERT10.

4.2 Main Results

4.2.1 NER Results
In Domain v.s. General Domain: Results in
Table 1 show that BioBERT and BioELMo in

7https://allennlp.org/elmo
8Though BioELMo uses the smallest corpus to train, it

performs better than BioBERT in probing setting, and general
ELMo in whole and probing setting.

9https://github.com/google-research/
bert

10https://github.com/dmis-lab/biobert

Method F1 (%)

Whole Probe Ctrl.

Ando (2007) 87.2 – –
Rei et al. (2016) 88.0 – –
Sheikhshab et al. (2018) 89.7 – –

Biomed w2v 84.9 78.5 67.5
General ELMo 87.0 82.9 84.0
General BERT 89.2 84.9 83.6
BioELMo 90.3 88.4 80.9
BioBERT 90.6 88.2 83.4

Table 1: NER test results. Whole: whole model per-
formance on BC2GM; Probe: Probing task perfor-
mance on BC2GM; Ctrl.: Probing task performance
on CoNLL 2003 NER. We use the official evaluation
codes to calculate the F1 scores where there are multi-
ple ground-truth tags, so the F1 scores are much higher
than what were reported in Lee et al. (2019).

the Whole setting perform better than the general
BERT and ELMo and biomed w2v, setting new
state-of-the-art performance for this dataset.

BioBERT and BioELMo remains competitive
in the Probing setting, doing much better than
their general domain counterparts and even gen-
eral ELMo in the Whole setting. This shows that
with the right pre-training, the downstream model
can be considerably simplified.

Unsurprisingly, in the Control setting BioBERT
and BioELMo do worse than their general coun-
terparts, indicating that the gains come at the cost
of losing some general-domain information. How-
ever, the performance gaps (absolute differences)
between ELMo and BioELMo are larger in the
biomedical domain than it is in the general do-
main, which is also true for BERT and BioBERT.
For ELMo and BioELMo, we believe it is because
the PubMed corpus contains many mentions of

https://allennlp.org/elmo
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/dmis-lab/biobert
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general-domain entities whereas the reverse is not
true. Because BioBERT is initialzied with BERT
and also uses general-domain corpora like Enligsh
WikiPedia for pre-training, it’s not surprising that
BioBERT is just 0.2 worse than BERT on CoNLL
2003 NER in control setting.
BioELMo v.s. BioBERT: Fine-tuned BioBERT
outperforms BioELMo with biLSTM and CRF
on BC2GM. As a feature extractor, BioBERT is
slightly worse than BioELMo in probing task of
BC2GM, but outperforms BioELMo in probing
task of CoNLL 2003, which can be explained
by the fact that BioBERT is also pre-trained on
general-domain corpora.

Method Accuracy (%)

Whole Probe Ctrl.

Romanov and Shivade (2018) 76.6 – –

Biomed w2v 74.2 71.1 59.2
General ELMo 75.8 69.6 60.8
General BERT – 67.6 62.1
General BERT-tog 77.8 71.0 74.1
BioELMo 78.2 75.5 58.3
BioBERT – 70.1 58.8
BioBERT-tog 81.7 73.8 69.9

Table 2: NLI test results. Whole: whole model perfor-
mance on MedNLI; Probe: Probing task performance
on MedNLI; Ctrl.: Probing task performance on SNLI.
To make the results comparable, we only use the same
number of SNLI training instances as that of MedNLI.

4.2.2 NLI Results
In Domain v.s. General Domain: Table 2 shows
that BioBERT and BioELMo in the Whole setting
perform better than their general domain counter-
parts and biomedical w2v for NLI, setting state-
of-the-art performance for this dataset as well.

Once again, we observe that BioBERT and
BioELMo outperform their general domain coun-
terparts in the Probing settings, which comes at
the cost of losing general domain information as
indicated in the Control setting results.

Note that the Probing task only models relation-
ships between tokens, but we still see competitive
accuracy in that setting (75.5% vs 76.6% previ-
ous best). This suggests that, (i) many instances in
MedNLI can be solved by identifying token-level
relationships between the premise and the hypoth-
esis, and (ii) BioELMo already captures this kind
of information in its embeddings.
BioELMo v.s. BioBERT: Fine-tuned BioBERT
does much better than BioELMo with ESIM
model. However, BioELMo performs better than

BioBERT by a large margin in the probing task of
MedNLI. We explore this in more detail in the next
section. Again, BioBERT is better than BioELMo
in probing task of SNLI because it’s also pre-
trained on general corpora.

We notice that the -tog setting improves the
BERT performance. Encoding two sentences sep-
arately, BioELMo still outperforms BioBERT-tog.
It suggests that BioELMo is a better feature extrac-
tor than BioBERT, even though the latter has su-
perior performance when fine-tuned on MedNLI.

4.3 Analysis

4.3.1 Entity-type Information

In biomedical literature, the acronym ER has mul-
tiple meanings: out of the 124 mentions we found
in 20K recent PubMed abstracts, 47 refer to the
gene “estrogen receptor”, 70 refer to the organelle
“endoplasmic reticulum” and 4 refer to the “emer-
gency room” in hospital. We use t-SNE (Maaten
and Hinton, 2008) to visualize different contextu-
alized embeddings of these mentions in Figure 3.
In Domain v.s. General Domain: For general
ELMo, by far the strongest signal separating the
mentions is whether they appear inside or outside
parentheses. This is not surprising given the re-
current nature of LSTM and language modeling
training objective for learning these embeddings.
BioELMo does a better job of grouping mentions
of the same entity (ER as estrogen receptor) to-
gether, which is clearly helpful for the NER task.

ER mentions of the same entities cluster bet-
ter by BioBERT than general BERT: there are two
major clusters corresponding to estrogen receptor
and endoplasmic reticulum by BioBERT as indi-
cated by the dashed circles, while entities of dif-
ferent types are scattered almost evenly by BERT.
BioELMo v.s. BioBERT: Clearly BioELMo
better clusters entities from the same types to-
gether. Unlike ELMo/BioELMo, Whether the
ER mention is inside parentheses doesn’t affect
BERT/BioBERT representations. It can be ex-
plained by encoder difference between ELMo and
BERT: For ELMo, to predict ‘)’ in forward LM,
representations of token ‘ER’ inside the parenthe-
ses need to encode parentheses information due to
the recurrent nature of LSTM. For BERT, to pre-
dict ‘)’ in masked LM, the masked token can at-
tend to ‘(’ without interacting with ‘ER’ represen-
tations, so BERT ‘ER’ embedding does’t need to
encode parentheses information.
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Figure 3: t-SNE visualizations of the token ER embeddings in different contexts by BioELMo, general ELMo,
BioBERT and general BERT.  and K represent ER mentions within and outside of parentheses, respectively.
Colors refer to different actual meanings of the ER mention.

Relation Type NN w/ Representation of Same Type (%)

BioELMo ELMo BioBERT-tog BioBERT BERT-tog BERT Biomed w2v

disease-symptom 54.2 52.1 44.5 38.8 34.2 37.0 40.9
disease-drug 32.8 34.4 26.1 17.9 27.7 22.6 23.6
number-indication 70.5 63.9 47.0 45.3 48.1 49.5 74.4
synonyms 63.6 56.4 60.8 55.8 56.4 52.8 51.7

All 57.5 53.3 47.1 42.1 43.3 42.5 49.5

Subset Accuracy (%) 73.9 62.8 71.4 65.0 65.8 64.5 69.7

Table 3: Average proportion of nearest neighbor (NN) representations that belong to the same type for different
embeddings, averaged over three random seeds. Biomed w2v performs best for number-indication relations, prob-
ably because it uses a vocabulary of over 5M tokens, in which about 100k are numbers. Subset accuracy denotes
the probing task performance in the subset of MedNLI test set used for this analysis.

4.3.2 Relational Information

We manually examine all test instances with the
“entailment” label in MedNLI, and found 78 token
pairs across the premises and hypotheses which
strongly suggest entailment. Among them, 22 are
disease-symptom pairs, 13 are disease-drug pairs,
19 are numbers and their indications (e.g.: 150/93
and hypertension) and 24 are synonyms or closely
related concepts (e.g.: Lasix R© and diuretic). Fig-
ure 1 shows an example of disease-drug relation-
ship. We hypothesize that a model is required
to encode relation information to perform well in
MedNLI task. We evaluate relation representa-
tions from different embeddings by nearest neigh-
bor (NN) analysis: For each distributed relation
representation (Eq. 1) of these token pairs, we cal-
culated the proportions of its five nearest neigh-
bors that belong to the same relation type. We re-
port the average proportions in table 3 and use it
as a metric to measure the effectiveness of repre-
senting relations by different embedding schemes.
We also show model performance for this sub-
set (78 instances for relation analysis) in table 3.
The trends of subset accuracy moderately corre-
late with the NN proportions (Pearson correlation
coefficient r = 0.52).

In Domain v.s. General Domain: For all re-
lations, BioELMo is significantly11 better than
ELMo in representing same relations closer to
each other, while there is no significant differ-
ence between BioBERT and BERT. This indicates
that even pre-trained by in-domain corpus, as fixed
feature extractor, BioBERT still cannot effectively
encode biomedical relations compared to BERT.
BioELMo v.s. BioBERT: BioELMo signifi-
cantly outperforms BioBERT and even BioBERT-
tog for all relations. This explains why BioELMo
does better than BioBERT in the probing task:
BioELMo better represents vital biomedical rela-
tions between tokens in premises and hypotheses.

5 Conclusion

We have shown that BioELMo and BioBERT rep-
resentations are highly effective on biomedical
NER and NLI, and BioELMo works even without
complicated downstream models and outperforms
untuned BioBERT in our probing tasks. This ef-
fectiveness comes from its ability as a fixed fea-
ture extractor to encode entity types and especially
their relations, and hence we believe they should

11Significance is defined as p < 0.05 in two-proportion z
test.
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benefit any task which requires such information.
A long-term goal of NLP is to learn univer-

sal text representations. Our probing tasks can
be used to test whether learnt representations ef-
fectively encode entity-type or relational informa-
tion. Moreover, comprehensive characterizations
of BioELMo and BioBERT as fixed feature extrac-
tors would also be an interesting further direction
to explore.
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