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Abstract

Population age information is an essential
characteristic of clinical trials. In this paper,
we focus on extracting minimum and maxi-
mum (min/max) age values for the study sam-
ples from clinical research articles. Specifi-
cally, we investigate the use of a neural net-
work model for question answering to address
this information extraction task. The min/max
age QA model is trained on the massive struc-
tured clinical study records from ClinicalTri-
als.gov. For each article, based on multiple
min and max age values extracted from the
QA model, we predict both actual min/max
age values for the study samples and filter out
non-factual age expressions. Our system im-
proves the results over (i) a passage retrieval
based IE system and (ii) a CRF-based system
by a large margin when evaluated on an anno-
tated dataset consisting of 50 research papers
on smoking cessation.

1 Introduction

Clinical trials are an important source of scien-
tific evidence for guiding the practice of evidence-
based medicine. However, many characteristics
of clinical trials are only reported in the pub-
lished research articles. The health service com-
munity could benefit from knowledge bases pop-
ulated with detailed information from clinical tri-
als reported in research articles. With this in mind,
clinical information extraction aims to extract such
information from journal articles that report ran-
domized controlled trials (Kiritchenko et al., 2010;
Wallace et al., 2016).

Relevant information about clinical trials can be
categorised along: (i) trial’s population charac-
teristics (e.g. minimum and maximum age of the
participants, education level, marital status, health
status), (ii) intervention methods, both what is be-
ing done (e.g. specific drug and dosage, planning

sessions, use of an app for daily reporting) and
how it is being administered (e.g., where, how of-
ten and by whom), and (iii) outcome of the study
(e.g., 30% of the population stopped smoking after
6 months).

In this paper, we focus on extracting popula-
tion characteristics and in particular minimum and
maximum (min/max) age values associated with
the study samples from clinical trials research ar-
ticles.

Unlike (Summerscales, 2013), our aim is to ex-
tract information from the full article, rather than
only from the abstract, as we have observed that
age information is not always described in the ab-
stracts. In our testing dataset consisting of 50
research papers, only nine papers describe the
min/max age information in their abstracts.

Naturally, analysing the entire article presents
many challenges. Our goal is to identify the fac-
tual min/max age value information for the per-
sons who actually participated in the clinical trial
(see Example 1 and Example 2 below). This
should be distinguished from non-factual min/max
age information (Example 3 and Example 4) and
also from min/max age information which is not
related to the participants in the study (Example 5
and Example 6).

(1) Participants were 83 smokers, who were 18-
23 years old and undergraduate students . . .

(2) participants aged 18-24 years were random-
ized to a brief office intervention (n=99) or to an
expressive writing plus brief office intervention
(n=97).

(3) To be included in the study, smokers had to be
between the ages of 18 and 60 years . . .

(4) The subjects were eligible for inclusion if they
were at least 18 years of age, reported smoking 10
or more cigarettes per day, . . .
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(5) An estimated 23.6% of young adults aged 18-
24 years are current smokers.

(6) Smoking Dutch youths had in many cases
tried their first cigarette at the age of 11-12 years.

Our proposed system extracts factual min/max
age values of the study samples directly from
research articles in PDF format. We leverage
the massive structured clinical study records from
ClinicalTrials.gov to provide distant supervision
for min/max age value extraction. Furthermore,
inspired by the work on hedging detection on Bio-
science domain (Light et al., 2004; Kilicoglu and
Bergler, 2008; Farkas et al., 2010), we explore a
list of “speculation cues” to filter out non-factual
min/max age expressions. Our system improves
the results over (i) a passage retrieval based IE sys-
tem and (ii) a CRF-based system by a large margin
when evaluated on an annotated dataset consisting
of 50 research papers on smoking cessation.

2 Related Work

2.1 Clinical Information Extraction

In general, research on information extraction
from medical literature is still in its infancy involv-
ing a number of limitations, such as lack of com-
mon benchmarking datasets, and a lack of general
consensus on the class of approaches that are re-
ported to work well on such benchmarks.

Some work has been conducted on supervised
approaches for medical information extraction.
Multiple studies have concentrated their efforts on
medical abstract. In (Kim et al., 2011), the authors
propose a conditional random filed (CRF) clas-
sification method for labelling medical abstract
sentences according to medical categories, such
as outcome, intervention, population. Hansen et
al., 2008 (Hansen et al., 2008) developed a Sup-
port Vector Machine algorithm for extracting the
number of trials participants from medical ab-
stracts, while in (Hassanzadeh et al., 2014), the
authors use a machine learning approach for clas-
sifying abstract sentences according to the PICO
(Population, Intervention, Comparison, Outcome)
scheme.

Other studies have exploited the entire article,
for the extraction of papers’ metadata as (Lin et al.,
2010): the authors propose a preliminary system
based on CRF for extracting formulaic text (au-
thors names, email and institution) as well as some

key study parameters as free text, from PubMed-
Central articles. They reach promising results for
the formulaic text, but only moderate success for
the free text attributes. The study in (Luan et al.,
2017) involves finding key-phrases from scientific
articles and then classifying them. However, these
categories are much broader (coarse-grained), e.g.
‘process’, ‘task’ etc., than the fine-grained cate-
gories in our task (min/max age).

A few studies have tackled the min/max age
extraction problem. Most research work on ex-
tracting information from clinical trial literature
considers “eligibility criteria” as a target element,
which often contains min/max age information
(de Bruijn et al., 2008; Kiritchenko et al., 2010).

However, min/max age information contained
in the eligibility criteria refers to the planned
min/max age and may be different from the actual
min/max age values of the study samples (for ex-
ample: the researchers could decide to test a pop-
ulation of women between 20-30 years, but realis-
tically they could gather participants only between
22 and 28 years old). (Summerscales, 2013) care-
fully designed a number of heuristic rules to ex-
tract min/max age values of the study population
from the abstracts. We differ from this latter work
as we (a) extract such information from the full ar-
ticles and (b) use a machine learning approach. In
addition, we integrate the rules designed by (Sum-
merscales, 2013) into our passage retrieval based
IE system as a baseline.

Generally, in contrast to previous work, in this
paper we a) concentrate on the extraction of pop-
ulation characteristics, b) use the entire article for
detecting the min/max age and c) compare an un-
supervised approach with a QA-based approach.

2.2 Question Answering

Most recently, reading comprehension or question
answering based on context has gained popular-
ity within the NLP community, in particular since
(Rajpurkar et al., 2016) released a large-scale
dataset (SQuAD) consisting of 100,000+ ques-
tions on a set of Wikipedia articles. In the medical
domain, (S̆uster and Daelemans, 2018) created a
dataset of clinical case reports for machine read-
ing comprehension (CliCR). The dataset contains
around 100,000 gap-filling queries on 12,000 case
reports. These queries are created by blanking out
medical entities in the learning points sections us-
ing some heuristics.
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Figure 1: Proposed QA based factual min/max age
value extraction framework.

We explore the QA framework for min/max age
value extraction. Various neural network models
have been proposed for question answering but
these models trained on SQuAD or CliCR do not
work well in our scenario because these datasets
do not contain the queries targeting the specific
min/max age values expressed in the text. There-
fore, we leverage instead the massive structured
clinical study records on ClinicalTrials.gov and
create the training data for our min/max age value
extraction component.

2.3 Non-factual Information Detection

There has been a significant amount of research
in detecting speculative language in scientific
research articles (Hyland, 1998; Light et al.,
2004; Kilicoglu and Bergler, 2008; Medlock and
Briscoe, 2007; Farkas et al., 2010; Morante and
Sporleder, 2012). Our task requires to extract in-
formation from definite statements, therefore we
use a list of speculation cues to filter out sen-
tences where min/max age information are ex-
pressed speculatively.

3 Approach

We develop a pipeline to extract factual min/max
age information from clinical trial studies. We di-
vide the task in two steps: 1) finding sentences
containing min/max age information; 2) extracting
the value from those sentences. For the first we de-
velop Min/Max age Sentence Classifier and for
the second we propose a QA approach and develop
the module Min/Max Age QA Model.

Figure 1 illustrated the process associated with
our proposed system. In the following sections,
we describe how we create training data from
ClinicalTrials.gov as well as each component of
our system in detail.

3.1 Creating Training Data Using Clinical
Study Records

We leverage the massive structured clinical study
records on ClinicalTrials.gov to create training
data for Min/Max Age Sentence classifier and
Min/Max Age QA Model. ClinicalTrials.gov is
one of the largest database of clinical studies con-
ducted around the world. It currently holds reg-
istrations around 273,000 trials from 204 coun-
tries. Each trial registration record contains a col-
umn called “Eligibility Criteria”, additionally min
and/or max age values are indicated if they are
present in the description text of the eligibility cri-
teria. Figure 2 shows an example of a clinical
study record from ClinicalTrials.gov.

Note that most min/age expressions in eligibil-
ity criteria are speculative (e.g., at least 21 years
of age, or child must be ages 6-12 years old), nev-
ertheless they are still reflective of various linguis-
tic forms for factual min/max age (e.g., aged 6-12
years old or age ≥ 18 years ). Therefore we ex-
pect that the models trained on this “noisy” dataset
can still (1) identify sentences containing min/max
age information and (2) predict the min/max age
values.

3.2 Pre-processing

Given a research article in PDF format, we first
extract clean text from the PDF file using GRO-
BID (Lopez, 2009). We associate each paragraph
to one of the five main sections: abstract, intro-
duction, method, result and discussion. This step
may introduce some noise (e.g., including the con-
tent from the table as the main body text) because
parsing PDF file in different styles is a challenging
task in itself.
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Figure 2: An example of a clinical study record from ClinicalTrials.gov.

3.3 Identifying Sentences Containing
Min/Max Age Information:Min/Max age
Sentence Classifier

After pre-processing, we identify sentences that
contain min/max age information. At the in-
ference stage, we first split paragraphs to sen-
tences using Stanford CoreNLP Toolkit (Man-
ning et al., 2014), then apply a classifier (Min-
MaxAgeSentFinder) to predict sentences contain-
ing min/max age information among all sen-
tences containing the word “age/ages/aged” or
“year/years”.

To train our MinMaxAgeSentFinder classifier,
we create the training data using the eligibility
criteria of the structured clinical study records
from ClinicalTrials.gov. Text in eligibility crite-
ria can be quite long (for instance, some crite-
ria contain more than 10 clauses/sentences), so
we only keep the clause/sentence which contains
the annotated min/max age value(s). More specif-
ically, we first split the eligibility criteria into
sentences/clauses using the delimiter “-”, then
choose the clauses/sentences which contain the
annotated min/max age values as well as the word
“age/ages/aged” or “year/years”. For instance, in
the example shown in Figure 2, we will keep the
sentence “Women and men at least 21 years of
age with suspected NSCLC to be confirmed after
surgery.” as the positive training instance and fil-
ter out other sentences/clauses.

We randomly choose 20,000 such sen-
tences/clauses (10,000 for min age and 10,000 for
max age) as positive training instances. Negative
training instances are sentences which do not
contain the word “age/ages/aged” or “year/years”
from 60 clinical research articles. Note that
these articles are different from the articles in
the testing dataset. We use MaxEnt classifier to
train MinMaxAgeSentFinder with the following
features: adjacent word n-grams (n=1-4) and
adjacent letter n-grams within words.

3.4 Predicting Min/Max Age Values for Each
Sentence: Min/Max Age QA Model

We approach the problem of extracting values of
min/max age from a question-answering perspec-
tive. Specifically, our system first reads a sentence,
then answers the questions “what is the min/max
age of the participants?”.

Various neural network models have been pro-
posed for this task but these models trained on
SQuAD do not work well in our scenario, because
SQuAD does not contain this type of question-
answer pairs. Therefore we create training data
for max/min age value extraction by leveraging
the massive structured clinical study records from
ClinicalTrials.gov The training data are 10,000
<eligibility criteria–min age> pairs and 10,000
<eligibility criteria–max age> pairs described
previously. Note that we use the whole eligibil-
ity criteria instead of choosing the specific sen-
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tence/clause which contain the min/max age value.
We believe that with the additional min/max age
information, the question-answering module can
locate the position of the min/max age value and
learn various patterns for the target question.

We train our min/max age question-answering
module (MinMaxAgeQA) using the Bi-Directional
Attention Flow (BiDAF) Network (Seo et al.,
2017). BiDAF uses attention mechanisms in both
directions (i.e., question-to-context and context-
to-question) to find a sub-phrase from the input
text to answer the question.

BiDAF includes both character-level and word-
level embeddings. Most word tokenization models
are not robust for numeric expressions in scientific
literature. For instance, the Stanford CoreNLP
tokenizer tokenizes the clause: “aged 6-12 years
old” as ”{aged, 6-12, years, old}” - it does not
recognize 6 and 12 as two different tokens. The
character-level embeddings in BiDAF can over-
come this problem and the module correctly pre-
dicts 6 is the value of min age for this example.

3.5 Predicting Min/Max Age Values for Each
Article

To predict min/max age values of the study sam-
ples for each article, we apply MinMaxAgeQA to
each predicted sentence containing min/max age
information from the abstract, method, and result
sections on both questions (i.e., what is the min
age of the participants? and what is the max age
of the participants?). Answers that do not repre-
sent a valid integer number or answers whose con-
fidence score are less than 0.5 are discarded. For
each question, we keep the answer with the high-
est confidence score.

We do not include sentences from the introduc-
tion section because it may include other min/max
age information which is not related to the study
samples (see Example 5 and Example 6). We leave
filtering out unrelated min/max age information
from introductions as future work.

Finally, if both min and max age values are pre-
dicted for an article, we check whether the min
age value is smaller than the max age value. Oth-
erwise we keep the answer with the higher con-
fidence score and discard the other one. For in-
stance, as shown in Figure 3, the number 16 is
predicted as both the min age value (with the prob-
ability of 0.956) and the max age value (with the
probability of 0.624) for an article, we keep 16 as

Figure 3: Conflicting min/max age values.

the prediction for the min age value and set the
prediction of the max age to ”Null“.

3.6 Non-factual Age Expression Filter
In this component, we filter out a min/max age
value prediction if it is expressed speculatively.
We first extract the clause which contains the
prediction, then check whether a speculation cue
word/phrase is present in the clause using the spec-
ulation cues from (Light et al., 2004). These cue
words are: {if, at least, must, had to, has to, have
to, need, needs}.

4 Evaluation

4.1 Testing Dataset
The ground-truth dataset used for evaluation com-
prises a set of 50 published journal articles in PDF
format on smoking cessation. The dataset con-
tains around 432k tokens and 18k sentences. Table
1 shows some statistics about the testing dataset.
Overall, we have 843 sentences containing the
word “age/ages/aged” or “year/years” and these
sentences contain 2,226 numeric tokens.

The articles were annotated by a team of four
behaviour science domain experts in the context
of a broader project focused on leveraging the
scientific literature in behaviour change (Michie
et al., 2017). Annotation for a particular document
was performed by two human annotators using the
EPPI tool1. The annotation process involved high-
lighting relevant pieces of text and then assigning
them to the corresponding min/max age attribute.
Additionally, in order to disambiguate the high-
lighted text, the annotators were asked to anno-
tate the entire sentence containing the highlighted
piece as the additional context. Conflicts in the
annotation process were resolved through discus-
sions. Note that not every document contains a
min/max age annotation. This is because not ev-
ery article reports the min/max age of the overall

1http://eppi.ioe.ac.uk/CMS/

http://eppi.ioe.ac.uk/CMS/
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Testing Dataset
# of articles 50
# of sentences 18,417
# of tokens (main text) 432,056
# of sentences containing 843
“age/ages/aged” or “year/years”
# of numeric tokens in sentences containing 2,226
“age/ages/aged” or “year/years”

Table 1: Statistics for the testing dataset.

study samples. In the testing dataset, 35 papers
have min age annotations and 25 papers have max
age annotations.

4.2 Evaluation Metric

We use recall, precision and F-score for evalua-
tion. Recall is calculated as the number of arti-
cles where the min/max age values are correctly
predicted divided by the number of articles where
min/max age values are annotated. Precision is
calculated as the number of articles where the
min/max age values are correctly predicted di-
vided by the number of articles where the system
makes a min/max age value prediction. F-score is
the harmonic average of the precision and recall.

4.3 Baseline 1: PassageRetrievalBasedMin-
MaxAgeExtractor

We developed a passage retrieval based IE sys-
tem to extract min/max age values (Ganguly et al.,
2018). The first step is to retrieve the passages
containing 10, 20, and 30 words using the query
“(age OR ages OR aged OR year OR years)”. The
intention of retrieving passages is to restrict ex-
traction of factoid answers to potentially relevant
small semantic units of text rather than the text of
the whole document.

The next step is to use validation criteria to
select the likely answer candidates. We use the
min/max age patterns from (Summerscales, 2013)
as the validation criteria to choose the likely an-
swer candidates from each retrieved passage for
min age and max age respectively. These pat-
terns can be viewed as rules which are carefully
designed by humans to extract min/max age val-
ues. For instance, a rule can be: if a passage con-
tains the phrase “greater than X” or “older than
X” and X is an integer number between 10 to 100,
then choose X as an answer candidate. It is worth
noting that (Summerscales, 2013) is the only pre-

vious work targeting the same task according to
our best knowledge. We integrate all the heuristic
rules for min/max age value extraction from (Sum-
merscales, 2013) into our passage retrieval based
IE system.

Finally, we score the answer candidates by a
term proximity function that takes into account the
differences in position between the query terms
and the candidate answers (Zhao and Yun, 2009).
The function is formally defined in the following
Equation:

sim(c,Q) =
1

|Q|
∑
q∈Q

exp(−(pc − pq)2/σ) (1)

Equation 1 describes the proximity based ranking
function between a candidate answer c and a query
Q, denoted by sim(c,Q). Practically, for each
word in the passage that matches the query terms
(q), the similarity function increases the score of
that candidate by an amount that depends on the
distance between that matched word and the can-
didate answer (pc − pq). Specifically, we use a
Gaussian function centered at each query term to
determine the increase in similarity score. The pa-
rameter σ controls the bandwidth of the Gaussians
and is set to 1 in our experiments.

4.4 Baseline 2:
CRFBasedMinMaxAgeExtractor

We also developed the second baseline using
CRF (Sutton and McCallum, 2012). The training
dataset contains the clauses/sentences which con-
tains the annotated min/max age value(s) from the
eligibility criteria of the clinical studies registered
in ClinicalTrials.gov. For each clause/sentence,
we use Stanford CoreNLP Toolkit (Manning et al.,
2014) to obtain the tokens as well as the POS tags,
then we create the corresponding training instance
using BIO labels (i.e., Beginning/Inside/Outside
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of a min/max age). Table 2 shows the training in-
stance for the example illustrated in Figure 2.

Token POS tag MinAgeAnnotation
Women NNS O
and CC O
men NNS O
at IN O
least JJS O
21 CD B
years NNS O
of IN O
age NN O
with IN O
suspected VBN O
NSCLC NNP O
. . . . . . . . .

Table 2: A training instance for the min age extraction
CRF model.

We train two CRF models for min age and max
age extraction respectively, using 10,000 training
instances for each model. We use words as well
as POS tags as features. More specifically, for the
word type features, we consider the current word
wi, the surrounding words (wi−2, wi−1, wi+1,
wi+2), as well as bi-grams (wi−1 + wi, wi + wi+1)
and tri-grams (wi−2 + wi−1 + wi, wi−1 + wi +
wi+1, wi + wi+1 + wi+2) created from words. We
create similar unigram, bi-gram and tri-gram fea-
tures using the automatically predicted POS tags
as well. We also include the combinations of the
previous prediction and the current prediction as
bi-gram features.

At the inference stage, for each article, we
first extract all sentences containing the word
“age/ages/aged” or “year/years”. We then apply
the min/max age CRF model on these sentences
and extract all tokens with the predicted label “B”.
In the end, among all predicted words, we choose
the word which represents a valid integer number
and has the highest confidence score as the pre-
dicted min/max age value for the article.

4.5 Results and Discussion

Table 3 shows the performance of the base-
lines (PassageRetrievalBasedMinMaxAgeExtrac-
tor and CRFBasedMinMaxAgeExtractor) as well
as our system (QABasedMinMaxAgeExtractor,
described in Section 3) for extracting min/max age
values of the study samples.

For MinAge, the first baseline (PassageRe-
trievalBasedMinMaxAgeExtractor) achieves a
very high precision score (90.9%) but suffers
from low recall (28.6%). The second baseline
(CRFBasedMinMaxAgeExtractor) improves the
recall by 21.4 points but only achieves a precision
score of 42.5%. Compared to the first baseline,
our system manages to improve recall by 37.1
points and still achieves a reasonable level of
precision (79.3%). Overall, our system improves
the results over the two baselines by a large
margin regarding F-score (71.9% vs. 43.5%, and
71.9% vs. 45.9%).

The similar pattern is also observed for Max-
Age: Our system improves the results over the first
baseline by a substantial margin on recall (60.0%
vs. 32.0%) and F-score (66.7% vs. 44.4%) respec-
tively.

It might seem surprising that CRFBasedMin-
MaxAgeExtractor performs much worse than
PassageRetrievalBasedMinMaxAgeExtractor for
MaxAge. This is because many max age values in
scientific articles are not correctly recognized as
a single token by Stanford CoreNLP Toolkit. For
instance, the tokenization model predicts that “18-
60” or “<=60” as single tokens. In contrast, our
system is more robust for parsing such numeric ex-
pressions.

In addition, it seems that the carefully designed
min/max age patterns in the first baseline only
cover a few forms of min/max age expressions. On
the contrary, our min/max age question-answering
module (MinMaxAgeQA, Section 3.4) trained over
a large-scale dataset can capture various linguistic
expressions of min/max age in natural language,
for instance, “≥ 18 years of age” or “age >= 18
years”.

4.6 Analysis
To better understand the roles of different compo-
nents in our system, we carried out a few experi-
ments:

• —WO MinMaxAgeSentFinder: instead of us-
ing MinMaxAgeSentFinder to find the sen-
tences containing min/max age information,
we pass all sentences containing the word
“age/ages/aged” or “year/years” from the ab-
stract, method, and result sections to the next
component MinMaxAgeQA.

• —WO MinMaxAgeQA: we use the most com-
mon min/max age expression pattern in clini-
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MinAge MaxAge
R P F R P F

Baseline 1: PassageRetrievalBasedMinMaxAgeExtractor 28.6 90.9 43.5 32.0 72.7 44.4
Baseline 2: CRFBasedMinMaxAgeExtractor 50.0 42.5 45.9 25.0 18.2 21.1
This work: QABasedMinMaxAgeExtractor 65.7 79.3 71.9 60.0 75.0 66.7

Table 3: Experimental results. Bold indicates statistically significant differences over the baseline using random-
ization test (p < 0.01).

MinAge MaxAge
R P F R P F

This work: QABasedMinMaxAgeExtractor 65.7 79.3 71.9 60.0 75.0 66.7
—WO MinMaxAgeSentFinder 68.6 68.6 68.6 52.0 56.5 54.2
—WO MinMaxAgeQA 31.4 84.6 45.8 40.0 71.4 51.3
—WO Non-factualSentFilter 68.6 70.6 69.6 60.0 71.4 65.2

Table 4: Contribution of each component to the overall system performance.

cal trial studies “X-Y” (e.g., 18-23 years old)
to predict min and max age values from the
first sentence contain such a pattern.

• —WO Non-factualSentFilter: Non-factual
age expression filter is not used.

The results of these experiments are shown
in Table 4. It seems that MinMaxAgeQA has
the most impact on the performance while Non-
factualSentFilter has less of an impact. In addi-
tion, MinMaxAgeSentFinder has more impact on
the results of MaxAge compared to MinAge.

We also performed some error analysis on our
full system. We noticed that the noise introduced
in the pre-processing step (e.g., missing some
paragraphs) is the main reason to cause our system
to predict “Null” for articles with min/max age an-
notation. For cases where a wrong min/max age
value is predicted, they are often embedded in the
speculative expressions which are not captured by
our current Non-factualSentFilter. For instance,
the system predicts 24 as the max age for one ar-
ticle in which 24 appears in a speculative sentence
(see speculative expression in Example 7). For this
article, the annotation for max age is 23 (see fac-
tual expression in Example 7).

(7) (speculative expression) Eligibility for this
study included being a student (full or part time),
smoking at least 1 cigarette/day in each of the past
7 days, being aged 18-24 years, and being inter-
ested in quitting smoking in the next 6 months.
(factual expression) Participants were 83 smok-

ers, who were 18-23 years old and undergraduate
students at a university.

5 Conclusions

This paper aims to extract factual min/max age
values of the study samples from clinical research
papers. We leverage the large-scale records from
the ClinicalTrials.gov database to provide dis-
tant supervision for our system. We also ex-
plore “speculative cues” and the structure of the
scientific papers to extract information from fac-
tual statements about the target study. We show
that our approach outperforms a passage retrieval
based IE system and a CRF-based model by a
large margin on a testing dataset consisting of 50
journal articles and around 18,000 sentences.

In the future, we plan to extend our framework
to extract other types of numeric values from the
clinical research papers, such as the outcome val-
ues of the different intervention groups and the
control group (e.g., 40% of PP abstinence rates),
as well as the time frame of the follow up (e.g., 52
weeks or 6 months).
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