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Abstract

This paper describes the work done by team
tearsofjoy participating in the VarDial 2019
Evaluation Campaign. We developed two
systems based on Support Vector Machines:
SVM with a flat combination of features
and SVM ensembles. We participated in all
language/dialect identification tasks, as well
as the Moldavian vs. Romanian cross-dialect
topic identification (MRC) task. Our team
achieved first place in German Dialect identi-
fication (GDI) and MRC subtasks 2 and 3, sec-
ond place in the simplified variant of Discrim-
inating between Mainland and Taiwan vari-
ation of Mandarin Chinese (DMT) as well
as Cuneiform Language Identification (CLI),
and third and fifth place in DMT traditional
and MRC subtask 1 respectively. In most
cases, the SVM with a flat combination of
features performed better than SVM ensem-
bles. Besides describing the systems and the
results obtained by them, we provide a ten-
tative comparison between the feature combi-
nation methods, and present additional exper-
iments with a method of adaptation to the test
set, which may indicate potential pitfalls with
some of the data sets.

1 Introduction

Language identification is a text classification task
that has been studied extensively in the field of
Natural Language Processing. The general con-
cept and common implementations are described
in the recent survey by Jauhiainen et al. (2018c). A
more challenging task is discerning closely related
languages or dialects of the same language. In re-
cent years, the VarDial Evaluation Campaign has
organized a multitude of shared tasks on classify-
ing these with textual and spoken data (Malmasi
et al., 2016; Zampieri et al., 2017, 2018). This
year’s VarDial evaluation campaign (Zampieri
et al., 2019) featured one rerun (Swiss German di-

alect identification) and three new closely-related
language identification tasks (Mainland vs. Tai-
wan varieties of Mandarin, Romanian vs. Molda-
vian, and cuneiform language identification, with
the latter covering seven related languages within
a wide historical time frame). Our focus has been
German dialect identification (GDI) and discrimi-
nating between mainland and Taiwan varieties of
Mandarin (DMT). However, we submitted predic-
tions for all language identification tasks.

While closely-related languages (or dialects)
pose a challenge for language identification, they
also provide opportunities for cross-lingual trans-
fer where available resource and tools in one lan-
guage is adapted to another, similar language va-
riety. This year’s evaluation campaign also fea-
tures two cross-lingual transfer tasks. Namely,
cross-lingual morphological analysis (CMA), and
cross-lingual topic identification between Roma-
nian and Moldavian (MRC). The CMA is a sub-
stantially different task than language identifica-
tion. However, the MRC subtasks on cross-lingual
topic identification can be solved by the very same
text classification models used for language iden-
tification. Hence, we also participated in the cross-
lingual classification subtasks of the MRC.

Our base model is a linear support vector ma-
chine (SVM) classifier with sparse character and
word n-gram features. These models have been
found to be successful in earlier instances of Var-
Dial language identification tasks; in fact, they
were found to be more effective than more re-
cent neural classifiers (Çöltekin and Rama, 2016;
Clematide and Makarov, 2017; Medvedeva et al.,
2017). A successful variation of these linear clas-
sifiers is an ensemble of classifiers with different
n-gram orders used both for language discrimi-
nation (Malmasi and Zampieri, 2017b,a), and na-
tive language identification (Malmasi and Dras,
2018). Besides the simple, ‘flat’ concatenation of
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the overlapping n-gram features, we also used an
ensemble approach in some of the tasks, providing
a tentative comparison between these two related
methods.

An interesting result of last year’s VarDial
evaluation campaign was SUKI team’s success
on Indo-Aryan language identification (Jauhiainen
et al., 2018b) and GDI (Jauhiainen et al., 2018a)
tasks with a rather large margin, which was likely
because of the adaptation mechanism they used
at prediction time. We adopted a similar adapta-
tion approach to our SVM systems. Besides the
curious difference in the GDI data set last year,
the adaptation idea is also a good fit for the cross-
lingual topic identification task (MRC).

The remainder of this paper introduces the tasks
and data sets, describes our systems, and presents
the results obtained followed by a brief discussion.

2 Tasks and Data

2.1 CLI: Cuneiform Language Identification

The provided datasets for Cuneiform Language
Identification (Jauhiainen et al., 2019) consisted
of a training set and a development set. The
training data contained cuneiform texts written in
Sumerian (SUX) and six Akkadian dialects: Old
Babylonian (OLB), Middle Babylonian peripheral
(MPB), Standard Babylonian (STB), Neo Babylo-
nian (NEB), Late Babylonian (LTB), and Neo As-
syrian (NEA). The data for the shared task con-
tained only Unicode transcriptions of the docu-
ments without token boundaries or any other vi-
sual features. The data set exhibited a large class
imbalance, ranging from 3 803 instances for Old
Babylonian to 53 673 instances for Sumerian. The
training data contained a total of 139 421 text sam-
ples, while the development set contained 668
lines for each language or dialect.

2.2 DMT: Discriminating between Mainland
and Taiwan variation of Mandarin

The Discriminating between Mainland and Tai-
wan variation of Mandarin Chinese (DMT) task
consisted of classifying sentences extracted from
news articles into classes of two major Man-
darin variations: Putonghua (Mainland China)
and Guoyu (Taiwan). The task has two tracks: tra-
ditional and simplified.

In Mandarin Chinese, there are many mutu-
ally intelligible regional variations. Putonghua
and Guoyu are more distinguishable in spoken

language due to systematic phonetic differences,
while they are more ambiguous in written text
with no overt morphological, syntactic, and lexical
preferences in language use, especially in formal
text. It is considered challenging even for native
speakers to distinguish between them, and since
the shared task data offered only textual informa-
tion with no phonetic transcription, it was partic-
ularly interesting to explore possible solutions to
the problem.

In contemporary written Chinese, there are two
scripts: traditional and simplified. The only dis-
tinction between the two writing systems is the
visual form of the characters. As the name sug-
gests, characters in simplified Chinese usually ap-
pear simpler than their traditional counterparts,
while some are identical which may lead to per-
formance variations based on different system de-
signs. A text in traditional Chinese can always be
transformed verbatim into its simplified counter-
part without any content change and vice versa.
Two corpora, one using traditional script and one
simplified, were provided to investigate the perfor-
mance of the discrimination task on the two dif-
ferent scripts, which will be further discussed in
Section 5.

The DMT data comes from the news domain
for both varieties. The datasets contained a train-
ing and development set for both simplified Chi-
nese (McEnery and Xiao, 2003) and traditional
Chinese (Chen et al., 1996). The training set
consisted of 18 770 samples for both Chinese va-
rieties, whereas the development set contained
2 000 samples each. The texts contained no punc-
tuation and were (automatically) segmented by the
task organizers.

2.3 GDI: German Dialect Identification

As in previous years, the GDI data set is based on
the corpus introduced in Samardžić et al. (2016),
consisting of samples from four regions around
Bern (BE), Basel (BS), Lucerne (LU) and Zurich
(ZH). Besides transcriptions of the audio record-
ings, we were also provided with 400-dimensional
i-vectors representing the acoustic features of each
sample, and automatically obtained normalization
data where words are paired with their standard
German spelling. In our submissions, we used the
text transcripts and i-vectors.

There were 14 279 training and 4 530 develop-
ment instances. Both training and development
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sets included a fair amount of class imbalance.

2.4 MRC: Moldavian vs. Romanian
Cross-dialect Topic identification

The MRC task involved discrimination between
two closely written language varieties, Romanian
and Moldavian, and cross-variety topic classifica-
tion. The first subtask was a binary classification
problem, discriminating between the two language
varieties. The second and third tasks required clas-
sifying the documents in one variety using training
data from the other variety into six topics: culture,
finance, politics, science, sports and technology.
The second subtask used Moldavian as the source
language and Romanian as the target language in
the transfer task. Task 3 had the same setup, but
the source and target languages were swapped.
Topic classification tasks are formulated as multi-
class problems (in contrast to multi-label classi-
fication common in the field), where each text is
assigned to only one class. Named entities in the
data set were anonymized.

The training data for subtask 1 consisted of
21 701 texts with a slight class imbalance (11 740
Romanian, 9 961 Moldavian), with a development
set of 11 834 instances approximately following
the same class distribution. Training sets for sub-
tasks 1 and 2 included 9 961 and 11 740 texts, and
development sets included 5 432 and 6 402 texts,
respectively. All subtasks shared a test set of 5 918
texts, although subtasks 2 and 3 were evaluated on
subsets of the test set. Further information on the
data can be found in Butnaru and Ionescu (2019).

3 Methods and experimental setting

Our main submissions were based on two SVM
systems that differ in the way they combine the
n-gram features: SVM with flat feature combina-
tions and SVM ensembles. We employed both
character and word n-gram features. Depend-
ing on the task, the character n-grams varied be-
tween 1 to 9 and the word n-grams varied from
1 to 3. The features were weighted with either
tf-idf or BM25 (Robertson et al., 2009) weight-
ing schemes. The flat combination is similar to
Çöltekin and Rama (2016) and the ensemble ap-
proach is similar to Malmasi and Dras (2015).
Both methods were implemented in Python using
the scikit-learn library (Pedregosa et al., 2011).

We also experimented with recurrent neural
classifiers and considered a system similar to HeLi

(Jauhiainen et al., 2016), which was also used in
earlier VarDial evaluation campaigns. However,
we only submitted results with the SVM classi-
fiers described in more detail below, and we will
limit our discussion to the results obtained by the
SVM classifiers.

3.1 SVM with flat combinations of features

For all tasks, we submitted predictions generated
by SVM classifiers where a range of overlapping
character and word n-grams are combined into a
single feature matrix. The features are weighted
using BM25, although a plain tf-idf weighing
scheme produced similar results on the develop-
ment set. In all tasks, we optimized the model
hyperparameters through random search, using 5-
fold cross validation on combined training and de-
velopment sets. Random search was stopped af-
ter approximately 1 000 draws from the space of
random parameters, and picking the best average
F1-score over the 5 folds. This is simply the same
approach taken in a series of earlier VarDial evalu-
ation campaigns (Çöltekin and Rama, 2016; Rama
and Çöltekin, 2017; Çöltekin and Rama, 2017;
Çöltekin et al., 2018).

Following the adaptation idea used by Jauhi-
ainen et al. (2018a,b) in last year’s VarDial eval-
uation campaign, we also employed an adaptation
approach in some of the tasks. At test time, we
produced a set of first-level predictions based on
the best model tuned for the task on the train-
ing/development set, and retrained the model af-
ter adding the predictions with high-confidence
to the training set. In our case, predictions with
high-confidence means the test instances that are
farther than a threshold — in this case, 0.50 —
from the decision boundary for binary classifica-
tion, and the instances that are claimed by only
one of the one-vs-rest classifiers for the multi-class
problems. Intuitively, this is useful for the adapta-
tion subtasks of MRC, and in case the distribution
of the test instances diverge from the distribution
in the training/development sets.

All tasks we participated in involved text clas-
sification. However, the GDI data set also in-
cluded features extracted from audio samples (i-
vectors), as well as normalized spellings of the di-
alectal words. We did not make use of the nor-
malized spellings, however in our GDI contribu-
tion, we used audio features by simply concatenat-
ing the i-vectors with the n-gram vectors weighted
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by BM25, before feeding them to the SVM clas-
sifiers. As SVMs are sensitive to the scale of
the data, we introduced a weight parameter and
searched for its optimum value during tuning.

3.2 SVM ensembles

SVM ensembles are generally considered more ro-
bust than single classifiers (Oza and Tumer, 2008).
An ensemble system makes use of decisions from
multiple classifiers on every input entity. The deci-
sions are congregated through a fusion method, re-
evaluated, and a final decision is made. There are
various fusion methods (Malmasi and Dras, 2015),
but the one we chose was mean probability rule,
an approach that is considered stable and simple
(Kuncheva, 2004) as well as resistant to estima-
tion errors (Kittler, 1998). Each classifier returns
a prediction with the probability of each test in-
stance belonging to each label. The final decision
is the label with the highest average probability.

Each classifier was trained on the standard train-
ing set using single n-gram order. We performed
binary search on the DMT simplified training de-
velopment set in the range of [0, 1000] in order to
determine the ideal penalty value C. The F1-score
increased with increasing C value, and plateaued
when C ≥ 100, so we adopted C = 100 as the opti-
mal value. Table 2 lists the score of each classifier
using the DMT simplified development set.

Since SVMs separate classes by maximizing
the margin from items to the hyperplane (Burges,
1998), there is no natural probabilistic interpreta-
tion of the decision function of an SVM classi-
fier. Therefore, we applied the technique of cal-
ibration suggested by Platt et al. (1999), a method
that maps the outputs of SVM to probabilities, as
implemented in the scikit-learn library.

We used grid search to find the optimal combi-
nation of n-gram features for each task. For DMT
simplified, the final ensemble system we selected
utilized five parallel classifiers, each of them gen-
erated with different parameters: character-based
bigrams, trigrams, 4-grams, 5-grams, and word-
based unigrams. For DMT traditional, the com-
bination additionally included character-based un-
igrams. For GDI, we used character-based bi-
grams, trigrams, 4-grams, 5-grams, word-based
unigrams, and the audio i-vectors.

task (model) F1-macro rank F1-diff

DMT-S (flat) 87.38 2 −1.91
DMT-S (ens.) 84.45 NA −4.84
DMT-T (flat) 88.44 3 −2.41
DMT-T (ens.) 85.61 NA −5.24
GDI (flat) 75.93 1 0.52
GDI (ens.) 65.17 NA −10.76
MRC 1 (flat) 75.73 5 −13.92
MRC 2 (flat) 61.15 1 5.26
MRC 3 (flat) 55.33 1 13.23
MRC 1 (flat)∗ 96.20 NA 6.70
MRC 2 (flat)∗ 69.08 NA 7.93
MRC 3 (flat)∗ 81.93 NA 26.60
CLI (flat) 76.32 2 −0.63

Table 1: Official results obtained by our models on
all tasks we participated. The column F1-diff indicates
the macro F1-score difference from the top score if the
result is not the top score, or the difference from the
second best scores otherwise. Our submissions in the
MRC task had an error, causing a shift of labels after
a certain index. The scores marked with ∗ are post-
evaluation results with the gold labels released by the
organizers after the evaluation period.

4 Results

We list the results obtained by our systems on the
official test sets in Table 1. The results clearly
show that the simple linear classifiers we used
are competitive with other (best) participating sys-
tems. Furthermore, in our experiments, the flat
combination often worked better than the ensem-
ble method. However, we do not provide a more
conclusive, systematic comparison at this time. In
the remainder of this section, we will first de-
scribe some of the interesting results in each task,
and also present a series of additional experiments
with the adaptation method described above.

4.1 DMT

For both DMT tasks, we submitted at least one
classifier with a combined feature matrix (flat) and
at least one model with parallel classifiers (ensem-
ble). Our submissions with a combined feature
matrix using character n-grams of order 1 to 4
combined with word unigrams and bigrams con-
sistently outperformed the parallel classifiers.

In order to improve accuracy for the ensemble,
multiple trials were conducted on the development
set to determine the best possible combination of
features. Most combinations performed similarly,



58

on the order of approximately 87–89% accuracy
with no significant jump in accuracy using any
particular combination. However, the most gains
were observed when combining a large number of
character n-grams with 1 ≤ n ≤ 5 and word uni-
grams. Word bigrams already resulted in a signif-
icant loss of accuracy in the SVM ensemble (pos-
sibly overfitting due to large number of features,
and large C value selected in the earlier step).

Feature Types n F1 macro

character 1 77.41
character 2 83.77
character 3 87.19
character 4 86.99
character 5 83.75

word 1 76.63
word 2 33.33

Table 2: F1 scores achieved by SVM with single fea-
tures, tested on development set (Simplified Chinese)

During development, we observed that train-
ing and testing our model on traditional Chinese
consistently performed slightly better than training
and testing on simplified Chinese. Combining the
traditional training set with the simplified training
set did not yield any significant gains and in fact
slightly hindered the model’s performance.

Our flat SVM model placed second for simpli-
fied and third for traditional. Other teams also saw
higher F1-scores for traditional compared to sim-
plified which suggests that the traditional script
carries more information that proves useful in dis-
tinguishing between the two dialects. Despite
this, our model misidentified the Taiwanese vari-
ant roughly twice as often as its Mainland coun-
terpart using both scripts (simplified: 166 vs. 88,
traditional: 151 vs. 80).

4.2 GDI

The same models used for DMT were slightly
modified for the German Dialect Identification
task. Our flat model using character n-grams of
order 1 to 5, word unigrams and bigrams, and the
i-vector features achieved first place with an F1-
score of 75.93, which was very closely followed
by the second and third place entries.

The confusion matrix presented in Figure 1
demonstrates that Basel was most easily identified
(recall: 91.99). Lucerne was the dialect most of-

ten misclassified (recall: 62.41), usually confused
with Bern. Consequently, Bern had the lowest pre-
cision (69.39) while Basel and Zurich enjoyed the
highest (tied with 80.81). This distribution mirrors
the results of last year’s GDI task (Ciobanu et al.,
2018; Ali, 2018; Benites et al., 2018; Barbaresi,
2018).
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Figure 1: Confusion matrix for GDI. Abbreviation key:
Bern (BE), Basel (BS), Lucerne (LU), Zurich (ZH).

In the development set, the SVM ensemble with
character n-grams of 2 ≤ n ≤ 5, word unigrams,
and audio i-vectors outperformed the flat feature
combination. The ensemble system yielded an F1-
score of 65.35 in comparison to a 44.24 F1-score
obtained by the flat combination. This is likely
due to the fact that ensemble systems are partic-
ularly effective when the individual classifiers are
independent, and features from text and audio pro-
vide more independent predictions in comparison
to the overlapping n-gram features.1

4.3 CLI
We submitted predictions using only the flat fea-
ture combination for the cuneiform language iden-
tification task. Our submission with adaptation
came in a close second with an F1-score of 76.32.
Since the data did not include any word bound-
aries, our system combines only character n-grams
(of order 1 to 5). We also experimented with two
unsupervised segmentation methods (Çöltekin and
Nerbonne, 2014; Virpioja et al., 2013). However,

1Our official score on the test with the flat combination
is higher than the ensemble submission. A potential reason
for this discrepancy is an error in our submission identified
post-evaluation.
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using tokens obtained through both segmentation
methods as (additional) features did not improve
the results on the development set.

On the CLI data, the adaptation method is
highly effective. Our submission with no adapta-
tion performed much worse (53.18 F1-score). We
will present more results with adaptation in Sec-
tion 4.5 and discuss it further in Section 5.

The confusion matrix from our official submis-
sion is presented in Figure 2, which depicts some
effects of the historical proximity of the languages.
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Figure 2: Confusion matrix for CLI. Abbreviations:
Late Babylonian (LTB), Middle Babylonian peripheral
(MPB), Neo Assyrian (NEA), Neo Babylonian (NEB),
Old Babylonian (OLB), Standard Babylonian (STB),
Sumerian (SUX).

4.4 MRC

We submitted predictions with only the flat com-
bination for the MRC tasks. Our submissions in
this task had an error, causing a shift of labels af-
ter a certain index. Despite this shift (with some
effort from the organizers to guess the location
of the missing predictions) our submissions ob-
tained first rank in subtasks 2 and 3. After rectify-
ing the problem post-evaluation, F1-macro scores
increased by up to 30%, reaching 96.20 for sub-
task 1, 69.08 in subtask 2, and 81.93 in subtask 3.
The high rate of success in discriminating between
such close linguistic varieties is interesting. How-
ever, the primary objective in MRC was cross-
lingual learning in the last two subtasks which we
discuss further in Section 4.5.

4.5 Adaptation to target data

In this instance of the VarDial evaluation cam-
paign, we employed a method of adaptation to the
test data. Among the tasks in which we partici-
pated, the clear cases for adaptation are MRC sub-
tasks 2 and 3. These tasks are transfer learning
tasks, hence some sort of adaptation is expected to
help. In other cases, we do not expect substantial
gains from adaptation unless test sets diverge from
the training substantially and systematically.

Our official submissions did not always include
results from the identical models with and without
adaptation, and as such does not clearly indicate
the utility of it. Here, we present results from more
systematic experiments conducted on the develop-
ment sets using our SVM model with flat combi-
nations of features. The intuition here is that if
the distribution of the test instances diverge from
the training set, we can adapt to the test set either
by using a small amount of data with gold-labels,
or predictions with high confidence at prediction
time. The first method (adding gold target data)
is not an option during the shared task evaluation.
Therefore, we tested both options on the desig-
nated development sets. For the second method
(adaptation at prediction time), our method is sim-
ilar to, but simpler than, the method of Jauhiainen
et al. (2018a,b). We trained a base classifier on
the training data, and re-trained the system af-
ter adding the test instances predicted with high-
confidence to the training data. For binary tasks,
we picked the training instances with a distance
greater than 0.50 to the decision boundary. For
multi-class classification problems, we picked the
instances that are claimed by only one of the one-
vs-rest classifiers as confident predictions.

Figure 3 presents five sets of results on all
(sub)tasks that we worked on. The first bar in each
group represents the average F1-scores obtained
with 5-fold cross validation on each training data
set. For the rest of the experiments, we split the de-
velopment set into two equal-sized data sets (after
shuffling). The first part is treated as development
set, and the second part is treated as test set. The
second set of bars (no adapt) represents the F1-
scores on the test set (the second part of the respec-
tive development sets), after training the model on
the training set. The third bar (add) is the first case
of adaptation. We add first half of the development
set to the training data, and test on the second half.
This is compatible in the scenario where we have
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Figure 3: Results of adaptation experiments. The graph presents macro averaged F1-scores of five experiments on
each task. ‘train’ indicates average of 5-fold CV on training set; ‘no adapt.’ indicates no adaptation, train only on
the training set; ‘add’ indicates adding half of the gold-labeled data from the development set, and testing on the
other half; ‘adapt’ is adaptation during training by adding predictions with high-confidence to the training set and
re-training the model; and ‘add+adapt’ combines the last two options.

a large amount of data from the source domain,
with a small amount of data from the target do-
main. The training instances from the source and
target are equally weighted in our experiments. In
the fourth set of experiments (adapt), the base clas-
sifier is trained on the training data, and testing is
done adaptively on the second part of the develop-
ment set. The final bar (add+adapt) combines the
last two. The base system is trained with the com-
bination of the training set and the first half of the
development set, and tested on the second part of
the development set using adaptation.

The scores illustrated in Figure 3 for both DMT
tasks and MRC subtask 1 (language identification)
are as expected. The cross-validation scores on the
training set are slightly better than scores on the
test (part of official development) set, and adap-
tion options give a slight boost in most cases. In
MRC subtask 2, the F1-score on the test set is bet-
ter than the training set. This is particularly inter-
esting, as this is a language transfer task where the
test set is expected to diverge. All scores we ob-
tained in this subtask are also much higher than the
(corrected) official test set score (69.08) presented
in Table 1. Adaptation, however, seems to help if
data with gold labels are added. In MRC subtask

3, which reverses the languages in MRC subtask
2, adaptation does not seem to be useful either.

The results of CLI and, especially, GDI tasks
are particularly surprising. In these tasks, adap-
tation, and especially the addition of gold-labeled
data, seem to improve the results drastically. The
difference likely indicates a systematic difference
between the training and development sets (and
possibly test). We provide further discussion of
these results for the GDI, in Section 5.

5 Summary and Discussion

Thus far we have described our participation in the
VarDial 2019 evaluation campaign, where we par-
ticipated in all text classification tasks using two
variants of linear SVM classifiers. Our systems
ranked well among other participants, obtaining
first place in some tasks, or following the top result
with small differences in others. The results show
that simple linear classifiers work well in language
identification and cross-dialect topic classification.
In most of our experiments, a flat combination of
features performed better than ensembles. Fur-
thermore, the adaptation system we used seems
to be effective, particularly in some of the tasks.
In this section, we present our observations on the
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DMT task, and discuss the potential reasons for
the effectiveness of adaptation methods.

Observations on the DMT task. The relation-
ship from traditional Mandarin to simplified is
generally bijective, but there are some cases where
the relation is many-to-one. Thus, a machine
is better able to predict using traditional over
simplified. Consequently, this explains why our
model always produced 1-2% better results with
the traditional script. To illustrate this, con-
sider the following example: 「雲」‘cloud’ and
「云」‘speak’ in traditional Mandarin are both
written as 「云」in simplified, which indicates
that the simplified character「云」carries the
meaning of both ‘cloud’ and ‘speak’. In other
words, simplified Mandarin has more homonyms,
which makes it more difficult for the model to
make an accurate prediction.

The texts converted from simplified to tradi-
tional are different from traditional to simpli-
fied. In traditional Mandarin, both「后」and
「後」can be converted to 「后」in simplified
Mandarin. If we convert the word「后面」‘in
the back’ from simplified to traditional, it could
be either「后面」or「後面」. Hence, we might
erroneously select「后面」‘the face of a queen’,
where「後面」would be the semantically correct
answer. Converting data from traditional to sim-
plified would prevent this type of noise.

Chinese is a language with many compound
words, whose tokenization require special atten-
tion. Some compounds are used only in Mainland
China, but not in Taiwan. However, when split,
the individual tokens might all be used in Taiwan,
but not the original compound word. Therefore,
this would be detrimental to its discrimination ac-
curacy. For example, the word ‘microeconomics’
is 「個體經濟學」in Taiwan, but 「微觀經濟
學」on the mainland. It is a compound word com-
posed of「個體」and「經濟學」in Taiwan and
「微觀」「經濟學」in Mainland China. But we
should not categorize「微觀」and「經濟學」as
Mainland Chinese, because when they are treated
as two tokens, they are two words that are com-
monly used in Taiwan. This is not a unique exam-
ple, and similar cases of segmentations of com-
pounds are likely to have detrimental effects on
identification.

Adaptation to test set. Another interesting find-
ing in this work is the impact of adaptation in the

CLI and GDI tasks, especially when using the i-
vectors. A potential explanation for this is the ex-
istence of other systematic variation in the data.
For the GDI task, our hypothesis is that the sec-
ond systematic variation is the (limited number of)
speakers. Since the data contains multiple utter-
ances from each speaker (and each speaker speaks
only one dialect), a classifier relying on speaker
specific features in the training set will also do
well on identifying his/her dialect. Such a clas-
sifier, then, will have difficulty classifying the ut-
terances from different speakers in the test set.

As a result, the scores of the models with no
adaptation in Figure 3 drop drastically when they
are trained on the training set, and tested on a test
set with utterances from different speakers. On the
GDI data, this is true of models using text-only
and text and i-vector features. However, it be-
comes more striking when i-vectors are included,
as they are well-known for their ability of speaker
identification. Although the model can achieve al-
most perfect dialect identification on the training
data, the F1-score drops to 44.24 when tested on
different speakers. The success on the training
set and the drop on the test set is less drastic for
text-only data. In both cases, the models perform
clearly better than random. Hence, the models
learn something about the dialects as well. How-
ever, the success of our (and other participants’)
adaptation methods, are likely not (only) finding
dialectal differences, but rely more on speaker-
specific features by incorporating features of oth-
erwise unknown speakers into the training set.

The experiments presented in Figure 3 also in-
dicate a likely additional source of variation in the
CLI data as well. Without more information about
the data and its division, the source of this varia-
tion is not clear. On the other hand, ineffectiveness
of the adaptation method on MRC subtasks 2 and
3 is unexpected. However, we are not able to offer
a potential explanation at this time.

Future work. Although the flat feature combi-
nation worked better in our experiments here, our
experiments are far from conclusive. We intend
to extend our work on ensemble models to cover
different combination methods and more diverse
architectures.
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Çağrı Çöltekin and John Nerbonne. 2014. An explicit
statistical model of learning lexical segmentation us-
ing multiple cues. In Proceedings of EACL 2014
Workshop on Cognitive Aspects of Computational
Language Learning, pages 19–28.

http://www.aclweb.org/anthology/W17-5028
http://www.aclweb.org/anthology/W17-5028
https://www.aclweb.org/anthology/W/W14/W14-0505.pdf
https://www.aclweb.org/anthology/W/W14/W14-0505.pdf
https://www.aclweb.org/anthology/W/W14/W14-0505.pdf

