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Abstract
The embedding of words and documents in compact, semantically meaningful vector spaces is a

crucial part of modern information systems. Deep Learning models are powerful but their hyperpa-
rameter selection is often complex and they are expensive to train, and while pre-trained models are
available, embeddings trained on general corpora are not necessarily well-suited to domain specific
tasks. We propose a novel embedding method which extends random projection by weighting and
projecting raw term embeddings orthogonally to an average language vector, thus improving the dis-
criminating power of resulting term embeddings, and build more meaningful document embeddings
by assigning appropriate weights to individual terms. We describe how updating the term embed-
dings online as we process the training data results in an extremely efficient method, in terms of both
computational and memory requirements. Our experiments show highly competitive results with var-
ious state-of-the-art embedding methods on different tasks, including the standard STS benchmark
and a subject prediction task, at a fraction of the computational cost.

1 Introduction

Modern information systems rely extensively on the embedding of words and documents in compact,
semantically meaningful vector spaces, where semantic similarity/relatedness can be computed and used
efficiently. Various embedding methods are essentially all based on the Distributional Hypothesis (Har-
ris, 1954; Sahlgren, 2008), and rely on co-occurrence evidence found in a corpus — whether computed
globally or in a local context.

The recent success of local context predictive models such as Word2Vec (Mikolov et al., 2013) have
initiated the development of more complex and powerful deep learning models (Bojanowski et al., 2016;
Peters et al., 2018). The resulting embeddings combine compactness and discriminating ability, but the
associated computational requirements are substantial and the optimal hyperparameter settings are not
easy to find. It is, therefore, more common that embeddings are pre-trained on large corpora and plugged
into a variety of downstream tasks (sentiment analysis, classification, translation, etc.). However, such
transfer learning might fail to capture crucial domain-specific semantics.

Revisiting the methods based on global co-occurrence counts, high dimensional spaces built from the
raw global co-occurrence counts are normally mapped to a more compact, lower-dimensional space of
embeddings, using dimensionality reduction methods such as Principal Component Analysis (Pearson,
1901), Locally Linear Embeddings (Roweis and Saul, 2000), and Random Projection (Achlioptas, 2003;
Johnson and Lindenstrauss, 1984). The latter has the unique advantage of being computationally cheap
in the creation of the low-dimensional space, while being a linear projection method for which no optimi-
sation is required at test time. On the flip side, the lack of optimisation means separation of datapoints is
obtained by a comparatively larger increase of the dimensionality, and the linearity of the method further
limits how compact the low-dimensional representation can be. However, thanks to the simplicity of the
model, very efficient optimisations can be made to the algorithms and the resulting embeddings can be
made to be effective even in high-dimensional spaces.



In our approach, we use a two-step process where we first reduce the dimensionality of the term
vectors by an extremely efficient implementation of random projection. We then project the term vectors
on the hyperplane orthogonal to the average language vector, which improves how discriminative the
vector representations are, and assign appropriate weights for building document embeddings.

The main contributions of this papers are:

• a method that computes the Random Projection of terms as expressed in terms of their co-occurrences
in documents without storing the matrix of term co-occurrences,

• a method to compensate for uninformative language elements by projection on the hyperplane
orthogonal to the average language vector,

• an effective weighing, adaptable to the domain and empirically verified, of the resulting vectors
which optimises the discriminative power of terms, and

• on the whole, a practical method which requires no iterative parameter optimisation and computes
embeddings and associated weights in a single pass through the documents of the training corpus.

As we show in our experiment section, the resulting method is highly competitive with the state-of-
the-art, in terms of sentence similarity computation and downstream classification task, and has much
lower computational space and time requirements.

2 Related work

Term embedding Much research has adopted the notion of Statistical Semantics (Furnas et al., 1983;
Weaver, 1955) or in Linguistics the Distributional Hypothesis (Harris, 1954; Sahlgren, 2008). Various
distributional semantic models have been proposed to represent (embed) words in a continuous vec-
tor space where semantically similar words are mapped to nearby points (‘are embedded nearby each
other’). The approaches fall into two main categories (Baroni et al., 2014). First, methods based on
global co-occurrence counts (e.g., Latent Semantic Analysis (Dumais, 2005)) which compute statis-
tics of how often some word co-occurs with its neighbour words in a large text corpus, and then use
dimensionality-reduction methods (e.g., Singular-Value Decomposition (Trefethen and Bau III, 1997),
Random Projection (Achlioptas, 2003; Johnson and Lindenstrauss, 1984; QasemiZadeh et al., 2017)) to
map the co-occurrence statistics of each word to a small, dense vector. Second, local context predic-
tive methods (e.g. neural probabilistic language models) which directly try to predict a word from its
neighbours or vice versa in terms of learned small, dense embedding vectors. The recent successes in the
latter models, e.g. Word2Vec (Mikolov et al., 2013; Baroni et al., 2014) have initiated the development
of more complex models with deep learning, such as FastText (Bojanowski et al., 2016), ElMO (Peters
et al., 2018). However, that also brings high computational cost and complex parameters to optimise.

Document embedding There are currently many competing deep learning schemes for learning
sentence/document embeddings, such as Doc2Vec (Le and Mikolov, 2014), lda2vec (Moody, 2016),
FastText (Bojanowski et al., 2016), Sent2Vec (Pagliardini et al., 2018), InferSent (Conneau et al., 2017),
etc. These are generally powerful, but are comparatively computationally very expensive. A simple
baseline such as averaged word embeddings is fast and still gives strong results in the annual Semantic
Textual Similarity task, as reported by Cer et al. (2017). However, assigning the proper weights to
words when calculating the sentence/document embedding is non-trivial. Arora et al. (2017) proposed to
remove a common component (remove the projection of the vectors on the first principal component of
the test set’s representation) after sentences are embedded as the weighted average of word embeddings.
This is a relatively cheap but effective improvement, but 1) it requires re-adapting the term vectors to
each new set of sentences, 2) it requires performing Singular-Value Decomposition, which is O(n3) and
therefore still quite challenging in the case of large datasets, and 3) the subtraction of the first principal
component does not reduce the rank of the model: it improves the discriminative power in practice, but
does not combat over-fitting.



We propose a model that addresses these three issues: it is only trained on the training set; it does
not require any optimisation (its computational time is linear in the size of the training set and can be
implemented extremely efficiently); it uses linear projection to reduce the rank of the model. With only
two straightforward parameters to tune — the term vectors’ dimensionality and the minimum threshold
below which rare words are discarded — the simplicity of our model is also a desirable feature in practice.

3 Algorithm

Let a document be a set of words for which co-occurance is relevant,1 and nD be the total number of
documents and nV the number of frequent terms.2 A term is frequent when it occurs in more than
K documents in the corpus, where K is flexible depending on the size of the corpus. As we show in
Section 5.1.2, however, with the weightings we propose in our approach, K can be very low. D is the
chosen dimensionality of the embedding vectors.

Further, let va be the D-dimensional average vector of the training documents. For each frequent
term t ∈ V , we have the following parameters: ct(d), The number of occurrences of term t in document
d; dt the number of documents that term t occurs in; ~vt the raw embedding vector of term t; ~rt a D-
dimensional “random vector” for term t, i.e., ~rt is a row of R (In our approach, this vector is binary and
contains an equal number of +1 and -1); wt the weight assigned to term t for document embedding.

Algorithm 1 Computing term embeddings
1: procedure COMPUTING TERM EMBEDDINGS

2: ∀t : ~vt ← ~0 . Initialise a D-dimensional zero vector for each term t
3: ∀t : wt ← 0 . Initial weight for each term is 0
4: ~va ← ~0 . Initialise a D-dimensional zero vector as the average vector
5: for all documents d do
6: ~v ← ~0 . Initialise a D-dimensional zero vector
7: for all terms t in document d do
8: δ ← 1+log (ct(d))√

dt
. Section 3.2

9: ~v ← ~v + δ ~rt . Section 3.1 and Section 3.2
10: for all terms t in document d do
11: ~vt ← ~vt + ~v . Section 3.1
12: ~va ← ~va + ~v . Section 3.3
13: for all terms t do
14: wt ← 1− cos(~vt, ~va) . Section 3.4
15: ~vt ← ~vt − (~vt · ~va)~va . Section 3.3
16: ~v∗t ← ~vt/||~vt||2

3.1 Fast Random Projection

Traditional random projection starts by computing a matrix of (weighted) term co-occurrences C of size
nV × nV , where nV is the total number of terms. This matrix contains, for each pair of terms ti and
tj , the number of documents (or paragraphs, or sentences) of the corpus in which both ti and tj occur.
Using a matrix of random projection vectors R of size nV ×D, we can then project our nV -dimensional
representation of each term to a lower D-dimensional space:

C′[nV ×D] = C[nV ×nV ]R[nV ×D] (1)

1In this context, a document could therefore be a sentence, a paragraph, a fixed-size window, a bibliographic record, etc.
2Terms could be words or phrases. Common phrases are automatically detected using a method similar to that described by

Mikolov et al. (2013).



However, computing C′ requires us to store both C and R, which can be challenging in terms of storage
space and unacceptably expensive for large vocabularies. Instead, we propose a method to compute C′

without ever explicitly representing C, simply by leveraging the linear nature of the projection (Eq. 1),
updating C′ directly as we go through the corpus.

Algorithm 1 does this by decomposing C in Eq. 1 into the sum of individual documents’ co-
occurrence matrices, C =

∑
dCd, so that

C′ =
∑
d

CdR (2)

where Cd is a matrix of zeros and ones indicating whether two terms co-occurred in the document.
Importantly, we can further decompose the matrix multiplication by relying on the properties of Cd:
every term in the document co-occurs equally with every other term in the document, so that all of the
document’s terms contribute equally to the projection. We can, therefore, sum all the relevant rows of R
and add the result to the relevant rows of C′, making the time complexity linear in the size of the corpus,
and the space complexity linear in the vocabulary size and constant in the number of documents .

3.2 Weighted counts

To improve the robustness of the approach, we weight the co-occurrence matrix C to reduce the effect
of terms that are extremely common in certain documents and of terms that occur in the vast majority of
documents. We use the term’s average modified TF.IDF score in the training documents. Experimentally,
we verified that the traditional IDF term of log N

dt
suppresses frequent terms too much, and replace it by

a factor of
√
N/dt, which has a similar effect but a longer tail and can also be seen as the normalisation

constant of the t-test statistic (Manning and Schütze, 1999). For the TF term, we use a factor of 1 +
log ct(d) and ignore the constant N which cancels out in the subsequent normalisation. Each row of R
is therefore weighted accordingly in the decomposition outlined above.

3.3 Orthogonal projection

Traditional models discard both very infrequent words (because they are too rare for the model to be
able to capture their semantics from the training data) and very frequent words (so-called “stop words”
because they do not provide any semantically useful information). In our approach, we give a continuous
weight to terms based on how frequently they occur and compute the average “language vector” of the
corpus, ~va. Unsurprisingly, this vector is very similar to the average vector of stop words. Intuitively,
words are increasingly more informative as they differ more from the average vector. By this reasoning,
we project word vectors on the orthogonal hyperplane to ~va (Algorithm 1 line 15),3 resulting in a repre-
sentation where the uninformative component of terms is eliminated, and normalise the vectors to have
unit length. When computing document vectors, we down-weight terms according to their similarity to
~va (see Section 3.4). This step is crucial to get distinctive document embeddings.

As a nice side effect, projection makes it possible to handle multilingual corpora. The vocabulary
of one language tends to be largely orthogonal to that of other languages (since words of one language
tend to co-occur almost exclusively with words of the same language), so that projection using one
language’s average vector does not have much effect on the terms in other languages. This makes it
possible to handle different languages effectively, within the same vector space.

3.4 Term weight assignment

Using the projection described above, the component that differentiates a term from the average vector is
kept as its final embedding. Similarly, how different a term is from ~va also indicates how much that term
contributes to the semantics of a document it is part of. In fact, we can interpret the cosine similarity as

3 We use projection rather than subtracting ~va to prevent orthogonal vectors from gaining undue importance.



a lower bound on the mutual information (MI) between the two vectors (Foster and Grassberger, 2011).
In order to give a higher weight to the most informative terms, we assign a higher weight to words with
lower MI by setting the final weight of each term to be wt = 1− cos(~vt, ~va).

3.5 Text embedding

With the frequent terms’ embedding vectors and their proper weights, we can compute text embedding
as the weighted average of its component term embeddings. For a text T , we obtain a set of vectors
V = {~v∗t1 , . . . , ~v

∗
tn}, where n is the number of terms in text T and ~v∗ti is the final embedding vector for

term ti. The embedding of text T is calculated as follows:

~vd =

∑n
i=1wti · ~v∗ti∑n

i=1wti

. (3)

where wti is the weight for term ti and out-of-vocabulary words are ignored. Note how term and docu-
ment vectors all have unit length, making similarity computations elegant and effective.

4 Experimental methodology

We performed three experimental evaluations: in Experiment 1, we compare our method to the state-of-
the-art on the standard STS benchmark; in Experiment 2, we qualitatively evaluate the weights assigned
to terms; in Experiment 3, we evaluate our embedding method in terms of subject prediction. For our
experiments, we implemented a parallelised version of the algorithm in C. All experiments were carried
out on the same server with 2 Intel Xeon Silver 4109T 8-core processors and 384GB memory.

For meaningful evaluation, we trained all methods on the same two datasets using publicly available
code for the state-of-the-art methods, and compared the resulting models on the standard STS benchmark.
One dataset is the generic Simple English Wikipedia.4 The other domain-specific one is a subset of the
MEDLINE database that consists of 106 MEDLINE articles, randomly selected from WorldCat.org.
In the latter dataset, each article is written in English and has a title and an abstract, to ensure sufficient
textual information for computing the word embeddings. This dataset is of interest to our research
and provides an interesting use case, as it consists of scientific articles and contains an above-average
proportion of technical terms and jargon. Very rare terms carry critical meaning and make the task of
word embedding particularly challenging.

5 Experimental results

5.1 Experiment I: STS Benchmark and Computational efficiency

The Semantic Textual Similarity (STS) Benchmark5 is a SemEval task organized between 2012 and
2017. It consists of 8628 pairs of English sentences, selected from image captions, news headlines
and user forums. The similarity between these sentence pairs was annotated using a five point scale via
crowdsourcing (Agirre et al., 2016). Participating systems calculate the similarity between these sentence
pairs and are evaluated based on their Pearson correlation with the gold standard STS annotations.

We trained our method on the September 2018 datadump of Simple English Wikipedia, where we
applied a sliding window of 80 terms, with 50% overlap. This resulted in 628,382 windows, each be-
ing considered as a separate document for co-occurrence counting. A total of 199,430 unique 256-
dimensional term vectors were obtained, their weights were calculated (Section 3.4), and used to embed
the sentences in the STS benchmark (Section 3.5). The results are listed in Table 1, together with several
state-of-the-art methods on the STS benchmark as published by Cer et al. (2017).

4https://dumps.wikimedia.org/other/cirrussearch/20180910/
5http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

WorldCat.org
https://dumps.wikimedia.org/other/cirrussearch/20180910/
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark


Table 1: STS scores and train times of different methods and different settings.
Method Dev Test Dataset used Train time
Doc2Vec (PV-DBOW) 72.2 64.9 AP-NEWS Unknown

31.0 27.0 S.E. Wikipedia 23m
53.7 49.8 MEDLINE 2h3m

FastText 65.3 53.6 Wikipedia Unknown
48.6 38.9 S.E. Wikipedia 51m
52.8 41.1 MEDLINE 3h4m

Sent2Vec 78.7 75.5 Twitter Unknown
68.8 62.2 S.E. Wikipedia 18m
65.4 55.0 MEDLINE 3h10m

Our method 75.1 64.6 S.E. Wikipedia 17s
73.6 58.9 MEDLINE 43s

Effect of projection and weighting in our method
No projection, no weighting 31.4 34.2 MEDLINE 43s
No projection, TFIDF weighting 45.3 46.3 MEDLINE 43s
With projection, no weighting 57.3 45.2 MEDLINE 43s
With projection, TFIDF weighting 68.4 55.8 MEDLINE 43s
With projection, our weighting 73.6 58.9 MEDLINE 43s

We then ran the publicly available implementations of Word2Vec (Mikolov et al., 2013), Doc2Vec (Le
and Mikolov, 2014), GloVe (Pennington et al., 2014), FastText (Bojanowski et al., 2016) and Sent2Vec
(Pagliardini et al., 2018) and trained them on the two datasets using the same machine. The common
hyperparameters were chosen to generally maximise the different methods’ performance for this task,
and are: a vector size of 256, a minimal number of word occurrences of 10, number of negative samples
of 10, window size of 10, using hierarchical softmax, a learning rate of 1.0 and a number of threads of
16. All the other parameters were kept to their default values. When trained on the MEDLINE dataset,
for word embedding only, it took Word2Vec and GloVe 29 and 35 minutes, respectively. As sentence-
level embedding methods, Doc2Vec cost more than 2 hours to train. FastText and Sent2Vec also required
more than 3 hours. In contrast, our combined term and document embedding — which includes the 106

Medline articles and 340×103 unique terms — requires only 43 s.
In analysing the STS benchmark results (Table 1), it is apparent that our method substantially outper-

forms all baseline methods when trained on the same dataset. Also notice how the training dataset has
a clear impact on each method’s performance, and even though the Simple English Wikipedia dataset is
more limited, both in vocabulary and in size, than the datasets used for publication by the other meth-
ods, our method still outperforms the published results of the other baselines in terms of STS scores,
and is very competitive with Sent2Vec. All methods suffer a drop of performance on the generic STS
benchmark when trained on the MEDLINE dataset, as a consequence of the domain-specific nature of
the dataset, but this drop is least pronounced in the case of our method. This suggests that a careful
search for a more appropriate training set would improve the method’s performance even further.

Finally, we should emphasise how low the train times are for our method. Since we do not require
any iterative optimisation of the model parameters, our method’s results are deterministically determined
by the training data, they do not depend on parameter initialisation, and training is orders of magnitudes
faster than the other methods.

5.1.1 Effect of projection and weighting

We here report the effects of projection on the hyperplane orthogonal to ~va (see Section 3.3) and weight-
ing (see Section 3.4) in our method. As shown in Table 1, the projection greatly improves our method



Table 2: STS scores and train times w.r.t. K
K Dev Test Train time(s) #terms
5 73.9 60.5 55s 753,422

10 73.6 58.9 43s 339,729
20 71.5 57.8 37s 183,058
40 69.0 55.2 35s 109,662
80 65.7 52.1 32s 68,461

in terms of STS scores. Our weighting also substantially outperforms TFIDF weighting (both with and
without projection), which itself outperforms no weighting. The difference in train time is negligible.

5.1.2 Effect of K

Decreasing the threshold K below which terms are ignored, results in a disproportionate increase of the
number of terms that are included, with the computed vectors for those added terms being increasingly
noisy. Because of the added computational burden and the noisiness of the estimation, traditionally
a comparatively large cutoff value for K is chosen. With our proposed method, however, very small
values for K are practical and the runtime does not grow much when a smaller K is chosen.

Table 2 reports the effect of K on the STS benchmark and the corresponding runtime, when training
with the 106 MEDLINE articles. With a K as small as 5, the runtime stays reasonable, while it brings
real benefits in terms of the STS benchmark, beyond those reported in Table 1 (where all methods use
K = 10), because more infrequent terms get embedded.

5.2 Experiment II: Qualitative evaluation of weights for individual terms

Table 3 gives examples of terms with their raw document counts and final weights. As expected, tradi-
tional stop words such as “for” and “also” have extremely low weights. Frequent terms such as “treat-
ment,” “analysis,” “system,” and “subsequent” are to some extent domain-specific stop words which have
low semantic value and therefore low weights too. However, more meaningful or discriminative terms
such as “inflammatory,” “mRNA,” “antibodies” and “immune” have much higher weights even when
they are also used very frequently.

At the other end of the spectrum, less frequent terms are likely to carry discriminative information
for representing the semantics of the whole documents; however not all equally infrequent words have
equally high weights. For example, “comprised” and “clarify” have much lower weights than “cytome-
try,” “spleen,” “cox” and “embryos” which are expected to be key topics for documents which contain
them. The orthogonal projection and weighting help to give discriminative terms a boost when calculat-
ing the document embedding, no matter how frequently these terms are used.

In addition, we observed that the average cosine similarity between all documents is smaller by
orders of magnitude when orthogonal projection and weighting is performed compared to when it is not,
suggesting the documents are distributed in more compact clusters. That being said, without a proper
evaluation with domain experts, it is not easy to evaluate the genuine validity of such operation. Our
future work will include conducting such user-in-the-loop evaluation.

5.3 Experiment III: Subject prediction

In most digital library catalogs, bibliographic records are indexed using controlled vocabularies or the-
sauri to improve the discoverability of the content. These vocabularies are either generic, such as Library
of Congress Subject Headings (LCSH),6 or domain-specific, such as Medical Subject Headings (MeSH)7

which is used for indexing articles in the MEDLINE database. Traditionally, assigning a most relevant
6http://id.loc.gov/authorities/subjects.html
7https://www.nlm.nih.gov/mesh/

http://id.loc.gov/authorities/subjects.html
https://www.nlm.nih.gov/mesh/


Table 3: Examples of term counts and their adjusted weights

t dt wt

for 720,776 0.003322
also 230,896 0.024318
treatment 171,984 0.079871
analysis 170,669 0.042365
system 99,582 0.077036
inflammatory 27,743 0.356823
mRNA 27,681 0.318550
achieved 27,382 0.114748
antibodies 27,379 0.433778
subsequent 27,289 0.060512

t dt wt

comprised 6099 0.293460
timing 6098 0.336269
artificial 6093 0.465012
cytometry 6086 0.776044
adjuvant 6085 0.501349
spleen 6080 0.523253
mucosal 6080 0.505713
cox 6072 0.608585
embryos 6055 0.724599
clarify 6053 0.298637

subset of subject headings to describe a record is done manually by professional taxonomists. However,
such manual assignment is very time-consuming and can no longer keep up with the speed at which new
records are produced. Therefore automatically assigning a set of relevant subjects to articles becomes
increasingly important.

We evaluated our embedding method on the use case of subject prediction. This remains a difficult
problem and is a form of Extreme Multi-label Text Classification (XMTC) (Prabhu and Varma, 2014;
Bhatia et al., 2015; Liu et al., 2017), where the prediction space normally consists of hundreds of thou-
sands to millions of labels and data sparsity and scalability are the major challenges. In our MEDLINE
dataset, there are more than 324,619 MeSH headings indexing 896,300 articles (the other articles do not
have any subjects) with on average 16 headings per article. However, only 102,484 MeSH headings are
used to index more than 10 articles.

We propose to treat the MeSH headings as terms in the documents they are associated with, so that
terms, documents and MeSH headings are all embedded in the same D-dimensional semantic space.
Our assumption is that an article would be indexed by its most related subject headings, i.e., the MeSH
headings with the highest cosine similarities to the document itself. To evaluate this, we computed
embeddings for term and MeSH headings using the training dataset (previously selected 106 MEDLINE
articles). We then prepared a separate testing dataset which contains 104 articles randomly selected from
WorldCat.org. The articles in the testing dataset all have an abstract and are indexed by at least one
MeSH heading. For each of these articles, we computed the document embedding using the terms in its
title and abstract, following Eq. 3. We then computed their most similar MeSH headings and compared
them with the actual ones. Notice how this method is, therefore, not biased towards predicting the more
common (and often less informative) subjects.

For FastText and Sent2Vec, we did the same, i.e., using the document-subject similarities to select the
potential candidates. Since FastText and Sent2Vec can be used to train a supervised text classifier (Joulin
et al., 2017), we additionally trained a classifier where each article’s title and abstract were concatenated
as a text, and their actual MeSH subject headings were used as the labels to predict. We trained a
separate FastText and Sent2Vec text classifier, which we used to predict the most likely subjects for the
documents in the testing dataset, based on their title and abstract. The parameters for training a classifier
were exactly the same as those for generating word embeddings, but the train time was dramatically
shorter, less than 5 minutes with the same machine.

All candidate subjects were ranked, by their similarities to the document or by the probabilities
according to the corresponding classifiers, as appropriate. Figure 1 shows the precision@n and recall@n
for different methods/settings. Both FastText and Sent2Vec perform much worse than our method if
using document-subject similarities for subject prediction. As multi-label classifiers, their performance
are nearly identical to each other and the quality of the predicted subjects are comparable with our
similarity-based prediction. Their precision@n is higher than our method for low values of n while it

WorldCat.org
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Figure 1: The performance comparison when predicting subjects

quickly decreases to be almost the same as ours. Up to top 20 candidates, the recall for three methods
are more or less the same, but our method is able to predict more actual subjects at lower ranks, where
the recall outperforms FastText and Sent2Vec.

Table 4 lists the 23 actual MeSH headings of an example article.8 The MeSH terms that reflect the
major points of this article are marked with an asterisk (*). The 25 most relevant MeSH headings pre-
dicted by three methods are also listed. It is not surprising that subjects such as “Humans” and “Female”
are predicted first by FastText and Sent2Vec, because they are the most frequent ones used in the training
dataset. In fact, many of the subjects predicted by these two classifiers are very common (see their docu-
ment counts in Table 4). These classifiers have trouble finding subjects which describe the articles more
precisely, while our method ranks specific subjects such as “Lens Capsule, Crystalline/Surgery” high in
the list, even though fewer than 100 articles in the training set are indexed by this subject.

We realise that this evaluation has its limitations. As shown in Table 4, highly related MeSH headings
such as “Lenses Intraocular” and “Phacoemulsification Methods” are predicted as good candidates for
this article, both of which are reasonable and potentially useful. But since they are not the subject
headings that the professional taxonomists have chosen, their value cannot be easily assessed. This
illustrates how precision/recall may not be a very meaningful evaluation metric in this application. It
also shows how this method could provide good recommendations to cataloguers.

6 Conclusion

We have described a novel, simple, effective and efficient method for term and document embeddings.
As we have shown, our method has important practical benefits: 1) it is fast and has low hardware
requirements, having linear time complexity and constant space complexity in function of the number
of documents, resulting in very short run-times in practice. 2) Since no iterative optimisation is needed,
the resulting embeddings are not affected by parameter initialisation and there is no uncertainty about
the quality of the results of a run. 3) It computes semantically discriminative term embeddings and
weightings with a single pass through the training data, and has the capacity to effectively include very
rare words. Our experiments show it outperforms state-of-the-art methods in terms of the STS benchmark
and subject prediction when trained on the same datasets, while at the same time being computationally
cheaper by orders of magnitude.

In the future, we will integrate sub-word information into the embedding process and evaluate how
effectively previously unseen words can be embedded. We will consider a wider variety of evaluation
methods, especially getting domain experts involved.

8https://www.ncbi.nlm.nih.gov/pubmed/14670424

https://www.ncbi.nlm.nih.gov/pubmed/14670424
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